
The Cost of Hurricane Evacuations

Jacob Gellman, Hannah Hennighausen, Brett Watson, Kevin Berry∗

29 October 2024

Click here for the latest version.

Abstract

Climate change is increasing the frequency of extreme natural disasters, which threaten

human life and safety. Evacuation is a key protective action against hurricane danger,

but it may be costly for individuals. Despite being an important input to emergency

management decisions, there is little evidence on the size of these costs. In this paper

we estimate the welfare costs of hurricane evacuations. We combine spatial data on

hurricanes, flooding, and evacuation orders with millions of records of individuals’ cell

phone-derived movement activity to study how communities behave during hurricanes.

These data generate rich insights about evacuation behavior, including differences by

physical risk, information provision, and demographics. Using a structural travel cost

model we estimate that the welfare costs of evacuation can be large when compared

to mortality costs, averaging a ratio of one to ten but occasionally exceeding the value

of statistical life lost (VSL). These results document an understudied cost of hurricanes.
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1 Introduction

Hurricanes have caused more than $340 billion in direct damages in the United States since

2018 (NOAA NCEI 2024). These disasters pose substantial risks to human life and safety.

Mortality can account for a high share of hurricane damages, with the value of statistical

life lost (VSL) frequently in the hundreds of millions of dollars for a given storm, especially

for tail events. These tail events will likely become more common as hurricanes grow in

frequency and intensity under climate change (Balaguru et al. 2023; Sobel et al. 2016).

One of the key protective actions against hurricane danger is evacuations. Understanding

the costs and benefits of evacuation is crucial for public policy, since the direct expenditures

of evacuation can be costly (Whitehead 2003). Further, individuals depend on government

information to know when to leave (Thompson, Garfin, and Silver 2017). A risk-neutral

emergency manager should issue an evacuation order when the expected avoided costs of

mortality exceed the costs of evacuation. This decision relies on knowledge of the costs of

evacuation; however, few estimates of these costs exist. While high-quality survey work has

investigated individuals’ direct expenditures for evacuations (Whitehead 2003), no work has

empirically valued the welfare costs of evacuation.

In this paper, we investigate the costs of hurricane evacuations. We combine spatial data

on hurricanes, flooding, and evacuation orders with tens of millions of records of individuals’

cell phone-derived movement activity to study how communities behave during hurricanes.

Using a structural travel cost demand model, we provide the first empirical estimates of the

welfare costs of hurricane evacuations.

Our analysis proceeds in several steps. First, using data on foot traffic, we provide de-

scriptive evidence of individuals’ avoidance of hurricane-affected areas, as well as substitution

of activities to unaffected areas. Avoidance behavior increases with measures of hurricane

severity, such as wind speed or flooding, as well as for informational mechanisms such as

higher category storms and National Weather Service (NWS) alerts. Descriptively, reduc-

tions in activity are strongest in whiter, more educated, higher income, and more urban

areas. These analyses build confidence in the use of cell phone-derived mobility data to

measure the effects of hurricanes on movement patterns.
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Next, we develop a structural model of an individual’s decision to evacuate during a

hurricane. Utility depends on the choice to move throughout space, the average utility of

a destination, the cost to reach it, and hurricane conditions at the origin or destination.

Using a log shares transformation as in Berry, Levinsohn, and Pakes (1995), we linearize

the model, which allows for computationally feasible estimation of utility parameters from

nearly 44 million observations of origin-destination movement flows. This transformation,

to our knowledge, has not been applied in a travel cost setting using aggregated data.

We generate several insights about evacuation behavior. Individuals show positive will-

ingness to pay (WTP) to evacuate from hurricane-affected locations. These costs are much

larger for communities subject to mandatory evacuation orders; and, consistent with prior

literature, we find that individuals are unresponsive to voluntary evacuation orders (Younes,

Darzi, and Zhang 2021). Similarly, although NWS alerts are associated with declines in

overall foot traffic, we find no evidence that individuals’ evacuation decisions respond to this

form of information provision. Comparing effect sizes, WTP is nearly twice as large with a

mandatory evacuation order as with no order or a voluntary order. In demographic hetero-

geneity analyses, we find that higher income communities and more educated communities

are most responsive to mandatory evacuation orders. Effects by race are mixed, consis-

tent with results from past survey literature (Huang, Lindell, and Prater 2016; Thompson,

Garfin, and Silver 2017). Notably, although the effects of mandatory orders are strong, no

demographic group responds to voluntary evacuation orders at a level that is statistically

different than receiving no order.

In back-of-the-envelope calculations, we apply the empirical WTP estimates over affected

populations to determine the total cost of hurricane evacuations by storm. This calculation

separately considers the welfare costs for areas subject to voluntary orders, mandatory orders,

or no order. Total costs range from $11 million to more than $120 million per storm.

Evacuation costs are generally increasing for higher category storms, as these hurricanes

tended to have had a greater number of evacuation orders. To contextualize the estimates,

we compare them to the property damages and mortality costs of hurricanes. For most

storms, evacuation costs are small when compared to total property damage. More germane

to emergency management is the comparison to mortality costs. We find that the cost of
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evacuation can be large when compared to mortality costs, averaging a ratio of one to ten

but occasionally exceeding total VSL, particularly for less-damaging storms that had a high

rate of evacuation. While tempting to judge that these areas were overly evacuated, these

comparisons do not provide conclusions about the optimality of evacuation for any one storm,

which would require knowledge about the counterfactual loss of life; nevertheless, the figures

provide context as to the magnitude of these costs. Overall, we consider our estimates to be

conservative, as they do not measure additional evacuation expenses such as lodging.

There are several contributions of this study. First, it contributes to a sparse literature

on the cost of hurricane evacuations, which has been identified as an important information

gap for emergency managers (Lindell, Prater, and Peacock 2007). Whitehead (2003) esti-

mated the opportunity costs of hurricane evacuation, surveying residents in North Carolina

about revealed preference expenditures following Hurricane Bonnie in 1998, as well as stated

preference expenditures under hypothetical scenarios. Depending on storm intensity and

emergency management, Whitehead (2003) estimated total evacuation costs at between $1.8

and $91 million per storm, which is in the range of welfare costs for the twelve hurricanes

we study.1 Mozumder and Vásquez (2015) found similar per-household costs following Hur-

ricane Ike in Texas. These studies do not directly estimate counterfactual expenditures in

the absence of evacuation, but provide a useful basis for comparison. To our knowledge, no

study has measured the welfare costs of hurricane evacuations using observational data.

We also add to the evidence on community behavior during hurricanes and disasters.

There has been substantial work in the survey literature to understand why individuals do

or do not comply with evacuation orders, focusing on physical measures of risk, demographic

predictors, information provision, and past experience (Huang, Lindell, and Prater 2016;

Thompson, Garfin, and Silver 2017). Our results are broadly consistent with this survey

literature. Among studies using observational data, our work is complementary to research

using cell phone-derived movement data in applications to wildfire smoke (Burke et al. 2022;

Fitzgerald 2024; Holloway and Rubin 2023; Lee and Beatty 2024) and in descriptive case

studies of two hurricanes (Juhász and Hochmair 2020; Li, Qiang, and Cervone 2024; Yabe

1. These numbers are inflation-adjusted to 2023 dollars from original published estimates of $1 to $50
million in 1999 dollars.
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and Ukkusuri 2020; Younes, Darzi, and Zhang 2021). Further, our study is related to an

economics literature studying pre-disaster preparation and the value of forecasting (Beatty,

Shimshack, and Volpe 2019; Molina and Rudik 2024).

Lastly, we contribute to a recent literature that values environmental costs using large,

administrative datasets (Earle and Kim 2024; Gellman, Walls, and Wibbenmeyer 2023; New-

bold et al. 2022). Interest is growing in the use of large datasets to estimate structural utility

parameters; however, doing so can present computational challenges (Earle 2022). Some re-

searchers have therefore focused on methods which recover individual-level parameters using

aggregated data (Melstrom and Reeling 2024). Our study is the first to apply the Berry,

Levinsohn, and Pakes (1995) framework in a travel cost setting to value environmental costs

or benefits with aggregated data.

The remainder of this paper is organized as follows. Section 2 describes the data and

discusses institutional detail surrounding hurricane evacuations. In Section 3, we provide

reduced form evidence on reductions in total activity during a hurricane, as well as substitu-

tion to nearby areas. Section 4 develops a structural model of hurricane evacuation, provides

empirical estimates of welfare costs, and gives insights into evacuation behavior. In Section 5

we apply these estimates to back-of-the-envelope calculations of the total cost of hurricane

evacuations by storm. Section 6 concludes.

2 Data

We combine data on hurricanes, flooding, government alerts, and cell phone-derived move-

ment patterns to create two estimating datasets. The first dataset is a panel of monthly

total foot traffic at a Census block group level over the years 2018 to 2023. These data show

how overall activity in an area changes during the month of a hurricane. The second dataset

focuses on flows of movement from origin block groups to destination counties, where the

unit of observation is an origin-destination pair by month for the years 2018 to 2023. These

paired movement flows are used to structurally estimate the cost of hurricane evacuation.
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2.1 Cell phone mobility data

To understand mobility patterns during hurricanes, we draw from a database of cell phone-

based geolocation information from the data provider Advan, a database which was formerly

managed by SafeGraph.2 Cell phone-derived movement data have been used to understand

responses to wildfire smoke (Burke et al. 2022; Fitzgerald 2024; Holloway and Rubin 2023;

Lee and Beatty 2024) and in descriptive case studies of two hurricanes (Juhász and Hochmair

2020; Li, Qiang, and Cervone 2024; Yabe and Ukkusuri 2020; Younes, Darzi, and Zhang

2021). These cell phone data have been shown to be broadly representative of the US pop-

ulation, both spatially and demographically, and are consistent with survey-based estimates

of mobility patterns (Squire 2019; Kang et al. 2020).

Movement data are collected from smartphone apps using location-based services. Over

the study period of 2018 to 2023, the sample represents an average of 32.5 million unique

devices per month in the United States. Device visits are recorded to approximately 7 mil-

lion unique “Points of Interest” (POIs), which represent identifiable commercial, industrial,

public, or other locations.3 We draw from Advan’s Neighborhood Patterns dataset, which

aggregates information to a Census block group by month level. We observe both an inten-

sive margin of visitation, as measured by the total number of stop counts anywhere in the

block group, as well as an extensive margin for the number of unique devices observed by

home block group of origin, a measure which does not account for intensity of visitation.4

The mobility data come with some limitations. First, the database covers the period from

2018 through the present, which narrows the set of hurricanes we may study. The data also

have limited coverage for residential locations, which prevents a detailed study of sheltering in

place during a hurricane. In addition, for privacy reasons, Advan implements some censoring

rules when low visitor counts are observed from an origin location.5 These concerns should

2. Data were acquired from: Dewey. 2024. https://www.deweydata.io.
3. Some frequently observed POIs include restaurants, medical facilities, religious organizations, urban

transit systems, recreation or sport centers, gas stations, hair or nail salons, schools, automotive shops,
offices, grocery stores, warehouses, and retail stores.

4. Advan determines each device’s home location by identifying the location where the device spent the
most time between 6pm and 8am during the previous calendar month.

5. Specifically, if a POI received only one visitor from a particular Census block group, the visit is added
to the total number of stop counts, but the block group is not reported; if two to four visitors are observed
from a block group, it is reported as having four visitors.
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be mitigated in our analysis because the Neighborhood Patterns data aggregate information

to a block group by month level, making it less likely that origin locations are censored.

We limit attention to the eight coastal southeast states spanning from Texas to North

Carolina. The first empirical analysis in Section 3 measures total foot traffic, i.e. the

intensive margin of stop counts, at a block group by month level over the years 2018 to

2023, resulting in approximately 3.7 million observations. The second empirical analysis in

Section 4 measures visitation from origin block groups to destination counties. We restrict the

data to the months of June through November over 2018 to 2023, resulting in approximately

44 million block group to county paired observations.

2.2 Hurricanes and flooding

To measure the location and timing of hurricanes, we collect spatial data from NOAA’s

National Hurricane Center (NHC) Best Track Data (HURDAT2).6 These data report, at six

hour intervals, the path of a hurricane, as well as wind speed radii associated with 34-, 50-,

and 64-knot winds. They also contain information on intensity, which measures peak wind

speed during the interval, and the Saffir-Simpson scale hurricane category (Tropical Storm

and Category 1 through 5). Figure A1 in the appendix plots an example of the raw points

and radii data. We match these data to block groups and record the maximum wind speed

and category during the month.

While hurricane polygons measure exposure, they do not measure the level of impact or

damage to a location. To identify severe hurricanes, we collect data on FEMA presidential

disaster declarations at a county level.7 We follow the procedure of Roth Tran and Wilson

(2023) and restrict attention to “Major Disasters” which were either coded as a “hurricane”

or which contained the word “hurricane” or “tropical storm” in the declaration title. Treat-

ment timing is determined based on the incident date, rather than the declaration date,

which can occur much later.8

6. NOAA NHC. 2024. “NHC Data in GIS Formats.” https://www.nhc.noaa.gov/gis.
7. FEMA. 2024. “OpenFEMA Dataset: Disaster Declarations Summaries - v2.” https://www.fema.gov/

openfema-data-page/disaster-declarations-summaries-v2.
8. Presidential disaster declarations are a formal process by state and local governments to request federal

assistance after a disaster that exceeds their response capabilities. The declaration date of a disaster can
occur months after the incident date. For more discussion, see Roth Tran and Wilson (2023) or OpenFEMA.
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As an additional measure of physical impacts, we identify block groups exposed to flood-

ing using FEMA National Flood Insurance Program (NFIP) claims data.9. In the data,

each claim is geolocated to a block group with an associated loss date. Block groups are

coded as flooded if there is at least one claim during the month. One important limitation

of this measure is that we cannot observe flooding in block groups where there are no NFIP

insurance policies.

Lastly, we use information from NOAA NCEI, which reports total property damages

and deaths attributable to a storm.10 These statistics generate useful comparisons for the

empirical estimates of hurricane evacuation costs.

2.3 NWS alerts and evacuation orders

Government-provided information plays a key role in individuals’ evacuation decisions. Un-

der the Protective Action Decision Model (PADM) framework used by emergency manage-

ment researchers, individuals form perceptions about physical characteristics of storms based

on messaging from the NWS that is transmitted through local authorities, the media, and

peer networks (Huang, Lindell, and Prater 2016). This model implies that information filters

through several pathways before reaching an individual. For example, Iman et al. (2023)

document how local emergency managers rely heavily on NWS forecasting and communica-

tion in their decision-making over evacuation orders. While local emergency managers may

have more proximate communication with affected individuals, they are downstream from

NWS information provision (Freeman et al. 2021).

To explore these upstream information channels, we collect data on NWS alerts from Iowa

Environment Mesonet.11 We identify block groups that received a NWS alert by overlaying

polygon shapefiles of temporally-explicit watches, warnings, and advisories for hurricanes.

NWS issues forecasts and alerts for public zones which are, in most cases, identical to coun-

ties. However, zones are frequently subset into smaller geographic areas when there are

9. FEMA. 2024. “OpenFEMA Dataset: FIMA NFIP Redacted Claims - v2.” https://www.fema.gov/
openfema-data-page/fima-nfip-redacted-claims-v2.
10. NOAA NCEI. 2024. “Billion-Dollar Weather and Climate Disasters.” https://www.ncei.noaa.gov/

access/billions/.
11. Iowa State University. 2024. “Iowa Environment Mesonet.” https://mesonet.agron.iastate.edu/

request/gis/watchwarn.phtml.
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large differences in weather due to topography or proximity to water. Figure A2 displays an

example of the raw data for 2019. Visually, zones are smaller when near to the coast.

We are also interested in downstream information channels, namely, evacuation orders.

When discussing evacuation orders, the terms “voluntary” and “mandatory” reflect the

probability of exposure and severity of hurricane impacts.12 These terms carry different

legal implications that may affect a resident’s decision to evacuate.13 The literature has

documented that individuals comply much more strongly with mandatory evacuation orders

than with voluntary evacuation orders (Freeman et al. 2021; Thompson, Garfin, and Silver

2017; Younes, Darzi, and Zhang 2021). This disparity is significant because residents who

delay evacuation may substantially increase their risk.

We gather information on voluntary and mandatory hurricane evacuation orders from

the Hurricane Evacuation Order Database (HEvOD) (Anand, Alemazkoor, and Shafiee-Jood

2024). This database compiles records of evacuation orders with linked sources to commu-

nications made in traditional news and social media. Evacuation orders are distinguished

as voluntary or mandatory, and are assigned to a location based on county FIPS code. In

total, we compile information for more than 400 unique evacuation orders. Since many areas

receive both voluntary and mandatory orders, i.e. when a voluntary order is upgraded to

a mandatory order, we reclassify treatment under mutually exclusive categories. If an area

received both a voluntary and a mandatory order, we code it as mandatory; if it received

only a voluntary order, we code it as voluntary.

2.4 Demographics

To explore demographic moderators, we match Census Bureau data at a block group level.14

Relevant variables include race, education, and income, as well as measures of urban develop-

ment. The cell phone mobility data defines block groups based on 2010 Census geographies,

12. FEMA defines a “voluntary evacuation” as a warning that “a threat to life and property [...] is likely
to exist in the immediate future,” and a “mandatory evacuation” as a warning that “imminent threat to life
and property exists.” See: FEMA. 2024. “Glossary of Terms.” https://www.fema.gov/pdf/plan/glo.pdf.
13. For example, in some states, officials have limited liability when responding to emergency calls made

during a mandatory evacuation order. See: National Governors Association. 2024. “Governor’s Guide to
Mass Evacuation.” https://www.nga.org/wp-content/uploads/2018/08/GovGuideMassEvacuation.pdf.
14. United States Census Bureau. 2024. https://data.census.gov.
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which were effective during the years 2010 through 2019. Where available, we use American

Community Survey data for the year 2018, which was the first year of our study period.15

2.5 Travel cost

We calculate driving distances and driving times between origin block groups and desti-

nation counties using the Open Source Routing Machine (OSRM), which combines rout-

ing algorithms with road network data from OpenStreetMap.16 These calculations rely on

population-weighted centroids for origin and destination geometries. Based on past survey

evidence, we restrict attention to driving distances within 500 miles to preclude the possibil-

ity of air travel, which would complicate the calculation of travel cost (English et al. 2018).

These restrictions result in 4.8 million unique routes.

Following English et al. (2018), we calculate travel costs between block group z and

county j in month and year t according to:

czjt = pDztDzj + pTztTzj, (1)

for travel distance Dzj and travel time Tzj. The variable pDzt captures the per-mile travel

cost between block group z and county j, which includes gasoline costs, per-mile vehicle

maintenance, and per-mile marginal vehicle depreciation. To estimate per-mile gasoline

costs, we combine monthly information on gasoline prices with annual nationwide average

fuel economy estimates.17,18 Per-mile vehicle maintenance costs and marginal depreciation

are sourced from AAA data.19,20 Finally, we compute hourly costs of travel time pTzt as one-

third the average household income in the block group’s zip code tabulation area divided by

15. An exception is our measure of “proportion of urban population,” which relies on the 2010 Decennial
Census, since 2020 Census geometries would not correspond to these block groups.
16. OSRM. 2024. “osrm: Interface Between R and the OpenStreetMap-Based Routing Service OSRM.”

https://cran.r-project.org/web/packages/osrm/index.html.
17. Energy Information Administration. 2024. “Weekly Retail Gasoline and Diesel Prices.” https://www.

eia.gov/dnav/pet/pet pri gnd a epmr pte dpgal m.htm.
18. Bureau of Transportation Statistics. 2024. “Average Fuel Efficiency of US Light Duty Vehicles.”

https://www.bts.gov/content/average-fuel-efficiency-us-light-duty-vehicles.
19. For example: AAA. 2018. Your Driving Costs 2018. https://exchange.aaa.com/wp-content/uploads/

2018/09/18-0090 2018-Your-Driving-Costs-Brochure FNL-Lo-5-2.pdf.
20. Marginal depreciation cost is computed as the difference between “reduced depreciation” and “increased

depreciation” between 10,000 and 20,000 miles, divided by 10,000 miles, as in English et al. (2018).
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2,080 working hours per year (English et al. 2018). All travel costs are inflation-adjusted to

2023 dollars.

2.6 Descriptive features of the data

We analyze the evacuation behavior of individuals, aggregated at the block group level, in

response to hurricanes and evacuation orders. The analysis considers various measures of

treatment, including being physically in the path of a hurricane, receiving a county-level

disaster declaration, and experiencing a voluntary or mandatory evacuation order.

Figure 1 provides a visualization of the frequency of treatment over the study period of

2018 to 2023. Panel (a) shows the number of times that a block group experienced a tropical

storm of any category, where the category is measured at the time of intersection with the

block group. For most block groups in the Southeast it is the norm to have experienced a

tropical storm. However, only coastal areas experienced a Category 3 or greater hurricane

over the time period, as shown in panel (b). Panel (c) displays an alternative measure of

treatment in county-level FEMA presidential disaster declaration. This variable, although

subject to institutional decision-making, serves as a measure of the severity of damages; by

comparison to panel (a), disaster declaration is far less frequent. Panel (d) visualizes the

intersection of panels (a) and (c), showing a block group’s ever-treated status for various

combinations of hurricane measures. The empirical analysis considers the varying measures

of treatment both jointly and separately.

Table 1 summarizes the variation in the data by individual storm. We observe seventeen

hurricanes of Category 1 or greater and twenty other tropical storms. As in Figure 1, the

reported category measures the maximum category we observe at the time of intersection

with a block group; for example, although Hurricane Michael reached Category 5 before

landfall, by the time it touched Florida it had weakened to a Category 4 storm. For each

storm, the table reports the number of block group by month observations that experienced

evacuation orders, received county disaster declarations, or were ever in the path of the

hurricane. Over 2018 to 2023, the resulting dataset contains 51,073 unique block groups,

839 unique counties, and approximately 3.7 million block group by month observations, with

more than 177,000 observations that fell in the path of a hurricane.
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Figure 1: Hurricane frequency over 2018 to 2023

(a) Hurricane path, any Cat. (b) Hurricane path, Cat. 3 or greater

(c) Disaster declarations (d) Ever-treated



Table 1: Variation in hurricane path, category, evacuation order, and disaster declaration

Storm Cat. Year
Obs w/

Vol. Evac.
Obs w/

Man. Evac.
Obs w/

Dis. Decl.
Obs

In Path

Ian 5 2022 496 3,602 11,801 18,065
Dorian 4 2019 404 4,186 1,095 5,594
Ida 4 2021 569 1,051 3,071 3,430
Idalia 4 2023 781 3,062 6,462 10,748
Laura 4 2020 3,113 1,511 2,260 2,408
Michael 4 2018 717 737 1,933 6,369
Delta 3 2020 813 1,199 2,214 4,080
Zeta 3 2020 237 33 1,783 8,935
Florence 2 2018 140 1,454 3,642 5,230
Sally 2 2020 811 1,124 1,340 2,112
Barry 1 2019 943 548 2,054 3,180
Elsa 1 2021 195 0 0 6,926
Eta 1 2020 208 76 0 10,690
Hanna 1 2020 68 0 0 1,026
Isaias 1 2020 1,175 134 0 5,623
Nicholas 1 2021 18 178 0 3,756
Nicole 1 2022 1,024 1,348 10,792 13,434
Other tropical storms (N=20) 0 0 0 4 44,495

Treated 177,071
Untreated 3,499,598
Total 3,676,669

Notes: Observations represent block groups by month. Category reports the maximum Saffir-Simpson
category achieved by a storm while over land. Voluntary and mandatory evacuations are categorized to
be mutually exclusive, such that the voluntary column reports observations which did not also receive a
mandatory evacuation. Disaster declarations are measured at a county level. A block group is considered in
the path of a storm if it saw sustained winds greater than 39 mph.

3 Avoidance

Before proceeding to the structural estimation, we examine reduced form evidence on changes

in total activity during the month of a hurricane. We estimate changes to foot traffic for

areas directly in the path of a hurricane as well as for areas that experienced spillovers

in visitation. These analyses shed light on avoidance of hurricane-affected locations and

substitution to unaffected areas. They also build confidence in the use of mobile device data

to measure the effects of hurricanes on movement patterns.
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3.1 Empirical approach and identification

For each block group we observe the raw number of visits to all POIs in a given month,

which will serve as the dependent variable. This variable measures the intensity of activity

for a given area. We estimate changes to activity based on two measures of treatment. First,

we identify areas that were physically in the path of a hurricane using the NOAA best track

polygons. Second, we record whether a block group’s county received a FEMA presidential

disaster declaration.

We expect that foot traffic drops for a block group in the path of a hurricane, and that

it drops more strongly when the block group’s county also received a disaster declaration,

since these events were more severe. It is reasonable to expect that this estimation produces

spillovers; individuals within an affected area will substitute their activities to areas outside

the hurricane zone, and individuals from outside the area who would have visited will sub-

stitute to unaffected regions. To capture this spillover, we include an indicator for block

groups whose county received a disaster declaration but which were not in the actual path

of a hurricane. These block groups are likely to be near to a hurricane-affected area but

may not have experienced as significant of damage. In this sense, the uninteracted disaster

declaration variable captures spillovers to less-affected areas, while the interacted disaster

declaration variable isolates severely-affected areas.

For block group z in month and year t, we estimate:

log(visitszt) = φ hur pathzt + θ dis declzt + ϑ (hur pathzt × dis declzt) + δz + λt + ηit,

(2)

where visitszt measures observed foot traffic count, hur pathzt is an indicator if the block

group was in the path of a hurricane, and dis declzt is an indicator if the block group’s

county received a presidential disaster declaration. In addition, the vectorX ′
zt measures other

characteristics of the block group, such as disaster alerts or other information. Block group

fixed effects δz account for location-specific, time-invariant unobservables, while month by

year fixed effects λt capture time-varying unobservables that are common to all block groups.

Regressions are weighted by block group population and standard errors are clustered at a
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county level.

We expect that φ < 0 and ϑ < 0 due to the adverse effects of hurricanes, while θ > 0

due to spillovers in proximate or less-affected regions. Identification requires an assumption

that foot traffic would have evolved in a parallel fashion as compared to unaffected areas,

conditional on fixed effects. It also requires that we adequately capture spillovers with the

uninteracted dis declzt variable. The inclusion of many control units, with more than 50,000

unique block groups and nearly 3.5 million untreated observations (see Table 1), should

mitigate this concern.

3.2 Changes in total activity during a hurricane

Table 2 displays results from estimation of Equation 2. Column 1 shows that the coefficients

follow the expected sign. Block groups in the path of a hurricane experience an approximately

2.7 percent reduction in activity. We also find evidence supporting the use of the uninteracted

dis declzt variable as a measure of spillover, as block groups whose counties received disaster

declarations but which were not in the path of a hurricane experienced an increase of 4.7

percent in foot traffic. The reduction in activity is strongest for block groups both in a

hurricane path and receiving a disaster declaration, where the addition of all three estimated

coefficients implies a 5.7 percent reduction in activity.
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Table 2: Changes to foot traffic during a hurricane

(1) (2)

Hurricane path -0.0273∗ -0.0273∗

(0.0153) (0.0152)
Disaster decl. 0.0466∗∗∗ 0.0464∗∗∗

(0.0097) (0.0097)
Hurricane path × Disaster decl. -0.0765∗∗∗ -0.0723∗∗∗

(0.0194) (0.0210)
Hurricane path × Disaster decl. × Vol. evac. order 0.0343

(0.0216)
Hurricane path × Disaster decl. × Man. evac. order -0.0327∗

(0.0181)

Block group FE Yes Yes
Month-year FE Yes Yes

Observations 3,658,837 3,658,837

Notes: A block group is considered in the path of a storm if it saw sustained winds greater than 39 mph.
Disaster declarations are measured at a county level. Voluntary and mandatory evacuations are treated
as mutually exclusive, such that areas coded as receiving a voluntary evacuation did not also receive a
mandatory evacuation. Standard errors are clustered by county. Weights are by block group population. *
p < 0.1, ** p < 0.05, *** p < 0.01.

Column 2 interacts indicators equal to one if an area was subject to a voluntary or manda-

tory evacuation order. The coefficient for voluntary evacuations is insignificant, implying no

measurable difference in activity for hurricane-affected areas that either received a voluntary

evacuation order or no evacuation order. In contrast, the marginal effect of a mandatory

evacuation order is an additional 3.3 percent reduction in foot traffic, for a total effect of 8.6

percent, though the coefficient for the marginal effect is significant only at the 10 percent

level.

The variables for evacuation orders may capture information effects, but they may also be

correlated with hurricane intensity. Appendix B explores physical mechanisms, alternative

information treatments, and demographic responses. Reductions in foot traffic are stronger

for higher measures of physical severity, such as wind speed and flooding. Reductions are

also stronger for whiter, more educated, higher income, and more urban areas. Examining

alternative informational mechanisms, effects are larger for areas that saw NWS hurricane

alerts or higher category hurricanes. Taken together, these results build confidence in the
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use of mobility data to measure changes in human movement during a hurricane.

It is worth re-emphasizing that reductions in foot traffic are likely driven both by outmi-

gration of the block group’s own residents and by avoidance from individuals outside the area.

To focus specifically on evacuation, we turn to an analysis that uses paired origin-destination

observations. These models allow for estimation of the cost of hurricane evacuations.

4 Evacuation

In this section we model an individual’s decision to evacuate during a hurricane. Utility

is derived from an individual’s choices to move throughout space, choices which depend on

the average utility of a location, the travel cost to reach it, and hurricane conditions at the

origin or destination. We empirically estimate these utility parameters to derive the welfare

damages of hurricane evacuation.

4.1 Modeling approach

At time t, an individual i chooses whether to visit geographic location j. Define utility as:

Uijt = Vijt + εijt, (3)

where Vijt denotes the observable portion of utility, and εijt is a preference parameter known

to the individual but unobserved by the econometrician. Let Vijt be specified as:

Vijt =

αcijt + βhjt + δj + λt + ξz(i),j,t, j ∈ {1, 2, ..., J};

ϕhz(i),t +X ′
z(i),tγ + δz(i), j = 0,

(4)

where z(i) corresponds to individual i’s home zone, such as a block group. Several variables

capture mean utility, including constants for destination locations δj, home zones δz(i), and

time λt. The variable ξz(i),j,t represents a random preference parameter at the level of home

zone by destination by time, and is unobserved by the econometrician. Of interest to the

researcher is the variable cijt, which denotes the travel cost of person i to visit location j at
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time t, and from which one can infer the marginal disutility in expenditure α. In addition,

the vector X ′
z(i),t includes other explicit characteristics of the home zone, such as disaster

alerts or other information. The variables hjt and hz(i),t summarize hurricane conditions at

the home zone or destination location. The parameter of interest is the WTP to move from

a hurricane-affected origin to an unaffected destination, WTP = ϕ/α.

Under the assumption that εijt is distributed iid type I extreme value, the probability

that individual i visits location j is:

Pijt =
exp(Vijt)

exp(Vi0t) +
∑J

k=1 exp(Vikt)
. (5)

To estimate, consider a market shares approach as in Berry, Levinsohn, and Pakes (1995).

Group representative individuals i into their home zone z, such as their home block groups.

For every location j, origin zone z, and time t, the estimated share of individuals choosing

j is given by:

szjt =
exp(Vijt)

exp(Vi0t) +
∑J

k=1 exp(Vikt)
. (6)

Taking logs, we have:

log(sz0t) = Vi0t − log(exp(Vi0t) +
J∑

k=1

exp(Vikt))

log(sz1t) = Vi1t − log(exp(Vi0t) +
J∑

k=1

exp(Vikt))

...

log(szJt) = ViJt − log(exp(Vi0t) +
J∑

k=1

exp(Vikt)). (7)

18



Differencing these logged shares yields a linear equation:

log(szjt)− log(sz0t) = Vijt − Vi0t

= αcijt − ϕhz(i),t + βhjt −X ′
z(i),tγ + δj − δz(i) + λt + ξz(i),j,t. (8)

Under the assumption that ξz(i),j,t is distributed normally, Equation 8 can be estimated using

ordinary least squares. The share sz0t is coded as the share of individuals choosing the home

location, such that effects are measured based on differences in utility relative to home.

4.2 The utility of evacuation

We estimate Equation 8 using flows of travel from origin block group z to destination county

j in month and year t. An observation consists of a block group origin and county destination

pair for a given month and year. Travel flows are measured based on whether unique devices

were observed in a location and thus do not reflect the intensity of activity, but rather the

presence or absence of a visitor from a given location. We define the origin zone as hurricane-

affected if the block group was both in the path of a hurricane and received a disaster

declaration, taking a value of one or zero. A destination county is defined as hurricane-

affected if it received a hurricane disaster declaration, again taking a value of one or zero.

We restrict the data in two ways. First, because almost all of the observed hurricanes and

tropical storms occurred during the months of June to November, we restrict attention to

these months for the years 2018 to 2023. Second, we limit attention to origin-destination pairs

that are within 500 miles of driving distance, as described in Section 2.5.21 The estimating

dataset consists of 43,908,471 observations.

Identification requires that the effect of hurricanes and travel cost be exogenous condi-

tional on fixed effects that control for average traits of individuals by origin zone, unobserved

qualities of each destination location, and time-varying factors common to all groups. Con-

ditional on these fixed effects, which capture unobservables such as sorting by preferences or

21. English et al. (2018) show that, in the context of recreational travel to the Gulf Coast, individuals are
likely to have traveled by air when coming from more than 500 miles, which complicates interpretation of
the travel cost variable.
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beliefs, the effect of hurricanes is treated as exogenous.22 Parameters of interest are constant

across individuals, which comes from an assumption of preference homogeneity. However, we

explore potential preference heterogeneity over hurricane exposure and evacuation orders us-

ing observable demographic and economic variables for origin block groups. Lastly, although

evacuation orders are subject to institutional decision-making, as discussed in Section 2.3,

the receipt of this information is treated as plausibly exogenous from the perspective of

individuals.

Table 3 displays results from estimation of Equation 8. In all regressions, observations

are weighted by origin block group population, with standard errors clustered at a county

level to allow for arbitrary correlation of the error term for nearby block groups. WTP is

computed based on the ratio of the marginal disutility of hurricane exposure to the marginal

disutility of expenditure, where standard errors use the delta method.

Column 1 reports the main estimation, which focuses on the disutility of hurricane ex-

posure. Coefficients yield the expected sign. Individuals are less likely to make trips to

locations at greater distances, as indicated by the negative and statistically significant travel

cost coefficient. They are also more likely to move from hurricane-affected areas to safe

locations, as indicated by the positive and statistically significant coefficient for hurricane

conditions at the origin. The third coefficient suggests some avoidance of hurricane-affected

destinations for individuals in safe origin areas, but it is not statistically significant. The

interacted variable for hurricane conditions at both origin and destination is noisy and close

to zero. WTP for evacuation, which measures an average over the population, is estimated

at approximately $7 per person.

Column 2 interacts indicator variables for voluntary and mandatory evacuation orders

at the origin location. Individuals appear unresponsive to voluntary evacuation orders, as

indicated by a small and noisy coefficient for the marginal effect of a voluntary evacuation

order. Effects are largely driven by mandatory evacuation orders, as WTP in column 2

is significant only for hurricane exposure under mandatory evacuation. According to this

estimate, WTP is approximately $11 per person when under mandatory evacuation.

22. See, for example, Bakkensen and Barrage (2022) for a discussion of the effect of beliefs on sorting and
the capitalization of flood risk into home prices.
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Table 3: Marginal utility in evacuation

(1) (2)

Travel cost (dollars) -0.0062∗∗∗ -0.0062∗∗∗

(0.0001) (0.0001)
Hurricane (orig.) 0.0424∗∗ 0.0347

(0.0213) (0.0239)
Hurricane (dest.) -0.0138 -0.0137

(0.0090) (0.0090)
Hurricane (orig.) × Hurricane (dest.) 0.0056 0.0052

(0.0293) (0.0295)

Hurricane (orig.) × Vol. evac. -0.0023
(0.0266)

Hurricane (orig.) × Man. evac. 0.0338∗

(0.0193)

WTP: Hurricane 6.84**
(3.45)

WTP: Hurricane, No evac. 5.59
(3.87)

WTP: Hurricane, Vol. evac. 5.23
(4.84)

WTP: Hurricane, Man. evac. 11.05***
(3.83)

Block group orig. FE Yes Yes
County dest. FE Yes Yes
Month-year FE Yes Yes

Observations 43,908,471 43,908,471

Notes: An origin block group is considered hurricane-affected if it saw sustained winds greater than 39 mph
and received a disaster declaration. A destination county is considered hurricane-affected if it received a
disaster declaration. Voluntary and mandatory evacuations are categorized to be mutually exclusive, such
that areas coded as receiving a voluntary evacuation did not also receive a mandatory evacuation. WTP is
computed based on the ratio of the marginal disutility of hurricane exposure to the marginal disutility of
expenditure, with standard errors using the delta method. General coefficient standard errors are clustered
by origin county. Weights are by origin block group population. * p < 0.1, ** p < 0.05, *** p < 0.01.

Individuals may differ in their responsiveness to hurricanes and evacuation orders. Ta-

ble 4 explores demographic heterogeneity by interacting quartile bins for race, education,

and income with evacuation orders. The prior survey literature has found mixed results

regarding heterogeneity of evacuation by race (Huang, Lindell, and Prater 2016; Thompson,

Garfin, and Silver 2017). Table 4 shows some evidence that non-white communities are
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more responsive to mandatory evacuation orders, however there is not a clear trend when

examining heterogeneity by Black and Hispanic groups specifically. Higher income and more

educated groups show monotonically increasing responses with higher quartile bins, con-

sistent with results in Yabe and Ukkusuri (2020) and Younes, Darzi, and Zhang (2021).

Notably, according to these results, no group is responsive to voluntary evacuation at a level

that is statistically different than receiving no evacuation.

Appendix C reports additional heterogeneity analysis. WTP is increasing with the mea-

sured wind speed of a hurricane, reaching $25 per person for the strongest wind speeds.

Though not monotonic, effects are also generally larger for higher category storms, where

category is measured by the maximum strength of the storm rather than by the experienced

wind of a block group. Testing an alternative form of information provision than evacuation

orders, we also find no statistically different response when communities receive NWS alerts.
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Table 4: Marginal utility in evacuation, demographic responses to evacuation orders

% Black % Hispanic % White % Bachelor Deg. Med. Inc.
(1) (2) (3) (4) (5) (6)

Main effects

Travel cost (dollars) -0.0062∗∗∗ -0.0062∗∗∗ -0.0062∗∗∗ -0.0062∗∗∗ -0.0062∗∗∗ -0.0062∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Hurricane (orig.) 0.0347 0.0346 0.0355 0.0346 0.0345 0.0357

(0.0239) (0.0239) (0.0239) (0.0239) (0.0239) (0.0238)
Hurricane (dest.) -0.0137 -0.0137 -0.0137 -0.0137 -0.0137 -0.0132

(0.0090) (0.0090) (0.0090) (0.0090) (0.0090) (0.0089)
Hurricane (orig.) × Hurricane (dest.) 0.0052 0.0055 0.0043 0.0053 0.0056 0.0032

(0.0295) (0.0295) (0.0295) (0.0295) (0.0295) (0.0294)
Hurricane (orig.) × Vol. evac -0.0023

(0.0266)
Hurricane (orig.) × Man. evac 0.0338∗

(0.0193)

Voluntary evacuation orders

Hurricane (orig.) × Vol. evac order × Het. Lowest Q 0.0043 -0.0219 -0.0111 0.0063 0.0231
(0.0361) (0.0249) (0.0272) (0.0222) (0.0261)

Hurricane (orig.) × Vol. evac order × Het. 2Q -0.0016 -0.0549 0.0034 0.0040 0.0037
(0.0349) (0.0388) (0.0227) (0.0270) (0.0270)

Hurricane (orig.) × Vol. evac order × Het. 3Q -0.0099 0.0139 0.0192 -0.0088 -0.0203
(0.0221) (0.0308) (0.0285) (0.0304) (0.0373)

Hurricane (orig.) × Vol. evac order × Het. Highest Q -0.0023 0.0401 -0.0287 -0.0074 0.0009
(0.0251) (0.0261) (0.0417) (0.0492) (0.0345)

Mandatory evacuation orders

Hurricane (orig.) × Man. evac order × Het. Lowest Q 0.0215 0.0435∗ 0.0412 0.0030 0.0276
(0.0213) (0.0244) (0.0280) (0.0251) (0.0242)

Hurricane (orig.) × Man. evac order × Het. 2Q 0.0362 0.0269 0.0431∗∗ 0.0177 0.0276
(0.0221) (0.0300) (0.0190) (0.0233) (0.0256)

Hurricane (orig.) × Man. evac order × Het. 3Q 0.0517∗∗ 0.0216 0.0346 0.0480∗∗ 0.0354∗

(0.0201) (0.0210) (0.0219) (0.0215) (0.0206)
Hurricane (orig.) × Man. evac order × Het. Highest Q 0.0232 0.0447∗∗ 0.0227 0.0526∗∗ 0.0360∗

(0.0287) (0.0188) (0.0244) (0.0223) (0.0202)

Block group orig. FE Yes Yes Yes Yes Yes Yes
County dest. FE Yes Yes Yes Yes Yes Yes
Month-year FE Yes Yes Yes Yes Yes Yes

Observations 43,908,471 43,908,471 43,908,471 43,908,471 43,904,188 42,864,164

Notes: Demographic heterogeneity is measured by quartile for the origin block group. An origin block group
is considered hurricane-affected if it saw sustained winds greater than 39 mph and received a disaster decla-
ration. A destination county is considered hurricane-affected if it received a disaster declaration. Voluntary
and mandatory evacuations are categorized to be mutually exclusive, such that areas coded as receiving a
voluntary evacuation did not also receive a mandatory evacuation. Standard errors are clustered by origin
county. Weights are by origin block group population. * p < 0.1, ** p < 0.05, *** p < 0.01.

5 Total Cost of Hurricane Evacuation

We generate back-of-the-envelope calculations for the total cost of hurricane evacuation using

the empirical WTP estimates of Table 3. We apply estimates according to whether a block

group was hurricane-affected and whether it received a voluntary or mandatory evacuation
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order.23 Because the empirical estimates represent an average WTP, we apply the welfare

cost to the adult population of a block group based on the above definitions of treatment.

These estimates consider only the costs within the eight states of the study area. In addition,

estimates are specific to travel costs and do not account for individuals’ additional direct

expenditures, such as lodging and food costs (Whitehead 2003). In that sense, the estimates

should be viewed as conservative.

Table 5 displays the welfare costs of evacuation by storm. These costs range from $11

million to more than $120 million per hurricane, with total costs over the period 2018 to 2023

amounting to half a billion dollars. For comparison, we also report each storm’s total property

damage, the associated deaths, and VSL using NOAA NCEI data. This exercise reveals

several insights. First, evacuation costs are generally greater for higher category storms, as

these storms tend to have had a greater number of observations subject to evacuation orders,

as reported in Table 1. In most cases, the costs of evacuation are small when compared to

the total property damage. Of relevance for emergency management is the comparison of

evacuation costs to mortality costs. In some cases the cost of evacuation is substantial when

compared to mortality costs, exceeding one fifth of the VSL or even surpassing the mortality

costs entirely. On average, the ratio of evacuation costs to mortality costs is about one to

ten.

These comparisons are presented for contextualization and do not provide definitive con-

clusions about the optimality of evacuation in any particular case. A risk-neutral emergency

manager should issue an evacuation order, which is a discrete action, when the cost of evac-

uation is less than the expected avoided costs of evacuation, a calculation which depends

on information about the likelihood of mortality from a storm. Thus, while it is tempting

to conclude that storms such as Hurricane Nicole or Hurricane Idalia were overly evacuated

since their evacuation costs exceeded their mortality costs, such a conclusion would require

knowledge of the expected costs had these areas not been evacuated. Still, the estimates of

Table 5 provide context for the magnitude of evacuation costs.

23. Voluntary and mandatory evacuation orders are treated as mutually exclusive. Areas are coded as
receiving a voluntary evacuation order only if they did not also receive a mandatory order. If an area
received a voluntary order and then subsequently received a mandatory order, it is coded as mandatory.
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Table 5: Costs of hurricane evacuation compared to property damages and VSL

Storm Cat. Year
Cost

of evac.
(millions)

Property
damage
(millions)

Evac. as
percent of

property (%)
Deaths

VSL
(millions)

Evac. as
percent of
VSL (%)

Ian 5 2022 120.3 114,774 0.10 152 1,702 7.1
Nicole 1 2022 97.3 1,044 9.32 5 56 173.8
Idalia 4 2023 73.7 3,430 2.15 5 56 131.7
Dorian 4 2019 64.8 1,912 3.39 10 112 57.9
Florence 2 2018 37.5 28,969 0.13 53 594 6.3
Ida 4 2021 22.9 81,945 0.03 96 1,075 2.1
Michael 4 2018 18.4 30,092 0.06 49 549 3.4
Laura 4 2020 17.4 27,215 0.06 42 470 3.7
Delta 3 2020 17.0 3,355 0.51 5 56 30.4
Barry 1 2019 14.8 713 2.07 2 22 65.9
Zeta 3 2020 11.8 5,093 0.23 6 67 17.6
Sally 2 2020 11.4 8,516 0.13 5 56 20.4

Total 507.3 307,057 0.17 430 4,816 10.5

Notes: Category denotes the maximum category achieved by the storm at landfall. Welfare losses from
evacuation are calculated by applying the average WTP estimates of Table 3 to the adult population that
was treated by a given hurricane and any associated evacuation orders. Voluntary and mandatory evacuation
orders are treated as mutually exclusive such that if an area received both voluntary and mandatory orders,
it is coded as a mandatory evacuation. Property damage and death statistics are taken from NOAA NCEI
data. VSL denotes the value of statistical life lost based on a value of $11.2 million in 2023 dollars. All
monetary damages are stated in 2023 dollars.

6 Conclusion

This study provides the first estimates of the welfare costs of hurricane evacuations. We

combine spatial data on hurricanes, emergency management decisions, and cell phone-derived

movement activity to study community behavior in response to evacuation orders. Using a

structural travel cost framework, we estimate that the costs of hurricane evacuations range

from $11 million to $120 million per storm. When compared to mortality costs, evacuation

costs average a ratio of one to ten, but can be much higher and occasionally exceed the total

VSL of a storm.

We make several contributions to the literature. First, we fill a critical information gap

regarding the cost of hurricane evacuations, which is a key input to emergency management

decisions (Lindell, Prater, and Peacock 2007). In addition, we add to the evidence on be-
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havioral responses to hurricanes and disaster warnings, distinguishing between mechanisms

related to physical risk, information sources, and demographic predictors. Lastly, we demon-

strate an application of the Berry, Levinsohn, and Pakes (1995) framework in a travel cost

setting to structurally value environmental costs.

We have spoken to a few key literatures, but it is worthwhile to further situate this work

in the broader literature on hurricane costs. Evacuations represent a short-term cost, as do

property damages. We can contrast these costs with other medium- and long-run economic

effects of hurricanes, including impacts to labor markets, GDP, migration, or personal finance

(Boustan et al. 2020; Deryugina 2017; Deryugina, Kawano, and Levitt 2018; Gallagher and

Hartley 2017; Groen, Kutzbach, and Polivka 2020; Roth Tran and Wilson 2023; Strobl 2011).

Some of these effects build over time, such as the use of government transfers (Deryugina

2017), while others may show non-linear dynamics, such as employment (Roth Tran and

Wilson 2023). We expect that evacuations represent a purely short-term cost.

Our study carries some limitations. In a technical sense, we do not measure additional

direct expenditures from evacuations, such as lodging. In a large survey, Whitehead et

al. (2000) found that, during Hurricane Bonnie in 1998, around 16 percent of evacuees

stayed in a hotel or motel, 6 percent stayed in a shelter, and 70 percent stayed with friends

or family. For a hypothetical future scenario, 24 percent reported that they would stay in

a hotel or motel, 12 percent in a shelter, and 60 percent with friends or family. Besides

lodging, additional costs could include traffic congestion, food, or entertainment (Whitehead

2003). Our estimates should therefore be considered conservative. Empirical exploration of

these expenditures is an area for future research.

Finally, as discussed throughout the paper, we do not speak to the optimality of any

particular hurricane evacuation. At the optimum, an emergency manager must weigh the

expected avoided mortality costs from an evacuation against the costs. This optimization

requires an explicit consideration of the consequences of type I and type II errors. The

estimates of this paper are informative for this decision-making process. Still, future research

in this area will be increasingly important as large natural disasters expand the need for

evacuation.
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Appendix A: Additional figures

Figure A1: Example raw data for hurricane path

Figure A2: Example raw data for NWS hurricane alerts during 2019
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Appendix B: Insights from changes in foot traffic

B.1 Physical mechanisms for avoidance

Table B1: Foot traffic, heterogeneity by wind speed

(1) (2)

Hurricane path -0.0273∗ -0.0273∗

(0.0153) (0.0153)
Disaster decl. 0.0466∗∗∗ 0.0463∗∗∗

(0.0097) (0.0098)
Hurricane path × Disaster decl. -0.0765∗∗∗

(0.0194)

Hurricane path × Disaster decl. × Wind spd 40-70 -0.0698∗∗∗

(0.0216)
Hurricane path × Disaster decl. × Wind spd 71-90 -0.0904∗∗∗

(0.0203)
Hurricane path × Disaster decl. × Wind spd 91-110 -0.0279

(0.0374)
Hurricane path × Disaster decl. × Wind spd 111-130 -0.0935∗∗∗

(0.0290)
Hurricane path × Disaster decl. × Wind spd 131-162 -0.1779∗∗∗

(0.0398)

Block group FE Yes Yes
Month-year FE Yes Yes

Observations 3,658,837 3,658,837

Notes: Wind speed is reported in miles per hour. A block group is considered in the path of a storm if it
saw sustained winds greater than 39 mph. Disaster declarations are measured at a county level. Standard
errors are clustered by county. Weights are by block group population. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table B2: Foot traffic, heterogeneity by flooding

(1) (2) (3)

Hurricane path -0.0273∗ -0.0269∗

(0.0153) (0.0152)
Disaster decl. 0.0466∗∗∗ 0.0475∗∗∗

(0.0097) (0.0096)
Hurricane path × Disaster decl. -0.0765∗∗∗ -0.0755∗∗∗

(0.0194) (0.0193)
Flood -0.0150∗∗

(0.0061)

Hurricane path × Flood = 0 -0.0262∗

(0.0151)
Hurricane path × Flood = 1 -0.0564∗∗

(0.0226)
Disaster decl. × Flood = 0 0.0496∗∗∗

(0.0103)
Disaster decl. × Flood = 1 0.0086

(0.0179)
Hurricane path × Disaster decl. × Flood = 0 -0.0792∗∗∗

(0.0204)
Hurricane path × Disaster decl. × Flood = 1 -0.0163

(0.0338)

Block group FE Yes Yes Yes
Month-year FE Yes Yes Yes

Observations 3,658,837 3,658,837 3,658,837

Notes: Flooding is measured as a binary variable if a block group had any NFIP claims in the month. A
block group is considered in the path of a storm if it saw sustained winds greater than 39 mph. Disaster
declarations are measured at a county level. Standard errors are clustered by county. Weights are by block
group population. * p < 0.1, ** p < 0.05, *** p < 0.01.
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B.2 Demographic heterogeneity of avoidance

Table B3: Foot traffic, demographic heterogeneity

% Black % Hispanic % White % Bachelor Deg. Med. Inc.
(1) (2) (3) (4) (5) (6)

Hurricane path -0.0273∗ -0.0273∗ -0.0273∗ -0.0273∗ -0.0274∗ -0.0275∗

(0.0153) (0.0153) (0.0153) (0.0153) (0.0153) (0.0151)
Disaster decl. 0.0466∗∗∗ 0.0466∗∗∗ 0.0465∗∗∗ 0.0465∗∗∗ 0.0464∗∗∗ 0.0460∗∗∗

(0.0097) (0.0097) (0.0097) (0.0097) (0.0097) (0.0097)
Hurricane path × Disaster decl. -0.0765∗∗∗

(0.0194)

Hurricane path × Disaster decl. × Het. Lowest Q -0.1228∗∗∗ -0.0568∗∗∗ -0.0729∗∗∗ -0.0526∗∗∗ -0.0649∗∗∗

(0.0282) (0.0197) (0.0206) (0.0190) (0.0202)
Hurricane path × Disaster decl. × Het. 2Q -0.0747∗∗∗ -0.0877∗∗∗ -0.0558∗∗∗ -0.0596∗∗∗ -0.0674∗∗∗

(0.0192) (0.0207) (0.0175) (0.0197) (0.0188)
Hurricane path × Disaster decl. × Het. 3Q -0.0549∗∗∗ -0.0892∗∗∗ -0.0647∗∗∗ -0.0738∗∗∗ -0.0765∗∗∗

(0.0185) (0.0185) (0.0192) (0.0210) (0.0195)
Hurricane path × Disaster decl. × Het. Highest Q -0.0686∗∗∗ -0.0612∗∗∗ -0.1132∗∗∗ -0.1148∗∗∗ -0.0890∗∗∗

(0.0207) (0.0226) (0.0274) (0.0205) (0.0204)

Block group FE Yes Yes Yes Yes Yes Yes
Month-year FE Yes Yes Yes Yes Yes Yes

Observations 3,658,837 3,658,837 3,658,837 3,658,837 3,658,261 3,526,916

Notes: Demographic heterogeneity is measured by quartile. A block group is considered in the path of a
storm if it saw sustained winds greater than 39 mph. Disaster declarations are measured at a county level.
Standard errors are clustered by county. Weights are by block group population. * p < 0.1, ** p < 0.05,
*** p < 0.01.

Table B4: Foot traffic, heterogeneity by urban development

% Car Alone % Homeowner % Sing. Fam. Homes % Mobile Homes Home Val. Urban
(1) (2) (3) (4) (5) (6) (7)

Hurricane path -0.0273∗ -0.0273∗ -0.0277∗ -0.0273∗ -0.0273∗ -0.0277∗ -0.0273∗

(0.0153) (0.0152) (0.0152) (0.0152) (0.0152) (0.0150) (0.0153)
Disaster decl. 0.0466∗∗∗ 0.0466∗∗∗ 0.0462∗∗∗ 0.0463∗∗∗ 0.0463∗∗∗ 0.0464∗∗∗ 0.0465∗∗∗

(0.0097) (0.0097) (0.0097) (0.0097) (0.0097) (0.0098) (0.0097)
Hurricane path × Disaster decl. -0.0765∗∗∗

(0.0194)

Hurricane path × Disaster decl. × Het. Lowest Q -0.1069∗∗∗ -0.0753∗∗∗ -0.1181∗∗∗ -0.1132∗∗∗ -0.0648∗∗∗ -0.0208
(0.0201) (0.0206) (0.0234) (0.0266) (0.0185) (0.0181)

Hurricane path × Disaster decl. × Het. 2Q -0.0775∗∗∗ -0.0714∗∗∗ -0.0623∗∗∗ -0.0912∗∗∗ -0.0547∗∗∗ -0.0298
(0.0204) (0.0189) (0.0183) (0.0227) (0.0177) (0.0193)

Hurricane path × Disaster decl. × Het. 3Q -0.0717∗∗∗ -0.0669∗∗∗ -0.0491∗∗∗ -0.0591∗∗∗ -0.0595∗∗∗ -0.0318∗

(0.0202) (0.0191) (0.0188) (0.0187) (0.0198) (0.0167)
Hurricane path × Disaster decl. × Het. Highest Q -0.0533∗∗∗ -0.0882∗∗∗ -0.0635∗∗∗ -0.0465∗∗∗ -0.1135∗∗∗ -0.0930∗∗∗

(0.0193) (0.0215) (0.0218) (0.0171) (0.0235) (0.0214)

Block group FE Yes Yes Yes Yes Yes Yes Yes
Month-year FE Yes Yes Yes Yes Yes Yes Yes

Observations 3,658,837 3,655,180 3,650,081 3,655,261 3,655,261 3,413,925 3,658,837

Notes: Demographic and community characteristic heterogeneity are measured by quartile. A block group
is considered in the path of a storm if it saw sustained winds greater than 39 mph. Disaster declarations are
measured at a county level. Standard errors are clustered by county. Weights are by block group population.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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B.3 Informational mechanisms for avoidance

Table B5: Foot traffic, heterogeneity by hurricane category

(1) (2)

Hurricane path -0.0273∗ -0.0271∗

(0.0153) (0.0152)
Disaster decl. 0.0466∗∗∗ 0.0459∗∗∗

(0.0097) (0.0098)
Hurricane path × Disaster decl. -0.0765∗∗∗

(0.0194)

Hurricane path × Disaster decl. × Cat. 0 0.0223
(0.0263)

Hurricane path × Disaster decl. × Cat. 1 -0.0965∗∗∗

(0.0233)
Hurricane path × Disaster decl. × Cat. 2 -0.0004

(0.0253)
Hurricane path × Disaster decl. × Cat. 3 -0.0750∗∗∗

(0.0238)
Hurricane path × Disaster decl. × Cat. 4 -0.0918∗∗∗

(0.0236)
Hurricane path × Disaster decl. × Cat. 5 -0.1776∗∗∗

(0.0467)

Block group FE Yes Yes
Month-year FE Yes Yes

Observations 3,658,837 3,658,837

Notes: Category measures a storm’s Saffir-Simpson category. A block group is considered in the path of a
storm if it saw sustained winds greater than 39 mph. Disaster declarations are measured at a county level.
Standard errors are clustered by county. Weights are by block group population. * p < 0.1, ** p < 0.05,
*** p < 0.01.
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Table B6: Foot traffic, heterogeneity by NWS alerts

(1) (2) (3)

Hurricane path -0.0273∗ -0.0246
(0.0153) (0.0152)

Disaster decl. 0.0466∗∗∗ 0.0480∗∗∗

(0.0097) (0.0094)
Hurricane path × Disaster decl. -0.0765∗∗∗ -0.0682∗∗∗

(0.0194) (0.0204)
NWS alert -0.0244∗∗

(0.0100)

Hurricane path × NWS alert = 0 -0.0237
(0.0148)

Hurricane path × NWS alert = 1 -0.0548∗∗

(0.0265)
Disaster decl. × NWS alert = 0 0.0504∗∗∗

(0.0099)
Disaster decl. × NWS alert = 1 -0.0019

(0.0299)
Hurricane path × Disaster decl. × NWS alert = 0 -0.0757∗∗∗

(0.0203)
Hurricane path × Disaster decl. × NWS alert = 1 -0.0084

(0.0396)

Block group FE Yes Yes Yes
Month-year FE Yes Yes Yes

Observations 3,658,837 3,658,837 3,658,837

Notes: NWS alerts are watches, advisories, and warnings reported for each block group by month. A
block group is considered in the path of a storm if it saw sustained winds greater than 39 mph. Disaster
declarations are measured at a county level. Standard errors are clustered by county. Weights are by block
group population. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Appendix C: Insights from changes in evacuation

C.1 Physical mechanisms of evacuation

Table C1: Marginal utility in evacuation, heterogeneity by wind speed

(1) (2)

Travel cost (dollars) -0.0062∗∗∗ -0.0062∗∗∗

(0.0001) (0.0001)
Hurricane (orig.) 0.0424∗∗

(0.0213)
Hurricane (dest.) -0.0138 -0.0138

(0.0090) (0.0089)
Hurricane (orig.) × Hurricane (dest.) 0.0056 0.0049

(0.0293) (0.0292)

Hurricane (orig.) × Wind spd 40-70 0.0401∗

(0.0232)
Hurricane (orig.) × Wind spd 71-90 0.0311

(0.0207)
Hurricane (orig.) × Wind spd 91-110 0.0615

(0.0529)
Hurricane (orig.) × Wind spd 111-130 0.0826∗∗

(0.0327)
Hurricane (orig.) × Wind spd 131-162 0.1525∗∗∗

(0.0333)

Block group orig. FE Yes Yes
County dest. FE Yes Yes
Month-year FE Yes Yes

Observations 43,908,471 43,908,471

Notes: Wind speed is reported in miles per hour. An origin block group is considered hurricane-affected
if it saw sustained winds greater than 39 mph and received a disaster declaration. A destination county is
considered hurricane-affected if it received a disaster declaration. Standard errors are clustered by origin
county. Weights are by origin block group population. * p < 0.1, ** p < 0.05, *** p < 0.01.
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C.2 Informational mechanisms of evacuation

Table C2: Marginal utility in evacuation, heterogeneity by hurricane category

(1) (2)

Travel cost (dollars) -0.0062∗∗∗ -0.0062∗∗∗

(0.0001) (0.0001)
Hurricane (orig.) 0.0424∗∗

(0.0213)
Hurricane (dest.) -0.0138 -0.0140

(0.0090) (0.0090)
Hurricane (orig.) × Hurricane (dest.) 0.0056 0.0016

(0.0293) (0.0299)

Hurricane (orig.) × Cat. 0 -0.0228
(0.0237)

Hurricane (orig.) × Cat. 1 0.0745∗∗∗

(0.0169)
Hurricane (orig.) × Cat. 2 0.0317

(0.0357)
Hurricane (orig.) × Cat. 3 0.0275

(0.0327)
Hurricane (orig.) × Cat. 4 0.0538∗∗

(0.0271)
Hurricane (orig.) × Cat. 5 0.0542∗

(0.0301)

Block group orig. FE Yes Yes
County dest. FE Yes Yes
Month-year FE Yes Yes

Observations 43,908,471 43,908,471

Notes: Category measures a storm’s Saffir-Simpson category. An origin block group is considered hurricane-
affected if it saw sustained winds greater than 39 mph and received a disaster declaration. A destination
county is considered hurricane-affected if it received a disaster declaration. Standard errors are clustered by
origin county. Weights are by origin block group population. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C3: Marginal utility in evacuation, heterogeneity by NWS alert

(1) (3) (2)

Travel cost (dollars) -0.0062∗∗∗ -0.0062∗∗∗ -0.0062∗∗∗

(0.0001) (0.0001) (0.0001)
Hurricane (orig.) 0.0424∗∗ 0.0501∗∗ 0.0501∗∗

(0.0213) (0.0248) (0.0249)
Hurricane (dest.) -0.0138 -0.0138 -0.0139

(0.0090) (0.0090) (0.0090)
Hurricane (orig.) × Hurricane (dest.) 0.0056 0.0061 0.0062

(0.0293) (0.0293) (0.0293)

NWS alert -0.0024
(0.0183)

Hurricane (orig.) × NWS alert -0.0129 -0.0153
(0.0249) (0.0186)

Block group orig. FE Yes Yes Yes
County dest. FE Yes Yes Yes
Month-year FE Yes Yes Yes

Observations 43,908,471 43,908,471 43,908,471

Notes: NWS alerts are watches, advisories, and warnings reported for each block group by month. An origin
block group is considered hurricane-affected if it saw sustained winds greater than 39 mph and received a
disaster declaration. A destination county is considered hurricane-affected if it received a disaster declaration.
Standard errors are clustered by origin county. Weights are by origin block group population. * p < 0.1, **
p < 0.05, *** p < 0.01.
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