
Welfare Losses from Wildfire 
Smoke: Evidence from Daily 
Outdoor Recreation Data 
Jacob Gellman, Margaret Walls, and Matthew Wibbenmeyer 

Working Paper 23-31 
August 2023 



Resources for the Future   1 

About the Authors 

Jacob Gellman is a Postdoctoral Fellow in the Department of Economics at the 
University of Alaska Anchorage. His research focuses on the economics of wildfire, 
land use, and housing. He holds a PhD in Environmental Science & Management from 
the University of California, Santa Barbara. Throughout his career he has worked on 
interdisciplinary wildfire issues with economists, ecologists, meteorologists, and other 
natural scientists. Prior to his graduate studies, he worked as an energy economics 
consultant, where he advised utilities and tribes on energy decisions and produced 
expert witness testimony for legal cases.  

Margaret Walls is a senior fellow at Resources for the Future (RFF). Her current 
research focuses on issues related to resilience and adaptation to extreme events, 
ecosystem services, and conservation, parks and public lands. Walls’s work on 
resilience assesses the factors that affect household location decisions in coastal 
areas, how individuals perceive flood risks, and how risk perceptions affect adaptation 
decisions. She has estimated the value of natural lands—such as wetlands—in 
providing protection from hurricanes and flooding and is assessing the extent to 
which hurricanes affect US migration patterns. 

Matthew Wibbenmeyer is a fellow at RFF. His research studies climate impacts and 
mitigation within the US land sector, with a special emphasis on wildfire impacts and 
management. US wildfire activity has accelerated in recent years, leading to increases 
in property damages, carbon emissions, and health impacts due to smoke. 
Wibbenmeyer’s research studies the impacts of these changes for communities, how 
these impacts are distributed, and how management choices affect the distribution of 
impacts. Alongside his work on wildfire, Wibbenmeyer is investigating the role of the 
US land sector in mitigating climate change, and how policy toward land sector 
choices may influence the United States' ability to meet climate goals. 

Acknowledgments 

We thank Andrew Plantinga, Olivier Deschênes, Kelsey Jack, Max Moritz, Dave Lewis, 
Steve Dundas, Jeff Englin, and Molly Robertson for comments and suggestions on this 
paper. We are also grateful to seminar participants in the UCSB Environmental 
Economics group, Western Economics Association 2022 Conference, AERE 2021 
Summer Conference, 2023 Occasional Workshop, AERE OSWEET, and University of 
Nevada-Reno. In addition, we thank Jude Bayham and coauthors, who generously 
shared the gridded air quality data. This research was funded by a United States 
Department of Agriculture National Institute of Food and Agriculture (NIFA) 
Agriculture and Food Research Initiative (AFRI) grant, award number 2020-67023-
33258. 



Welfare Losses from Wildfire Smoke: Evidence from Daily Outdoor Recreation Data  2 

About RFF 

Resources for the Future (RFF) is an independent, nonprofit research institution in 
Washington, DC. Its mission is to improve environmental, energy, and natural resource 
decisions through impartial economic research and policy engagement. RFF is 
committed to being the most widely trusted source of research insights and policy 
solutions leading to a healthy environment and a thriving economy.  

Working papers are research materials circulated by their authors for purposes of 
information and discussion. They have not necessarily undergone formal peer review. 
The views expressed here are those of the individual authors and may differ from 
those of other RFF experts, its officers, or its directors. 

Sharing Our Work 

Our work is available for sharing and adaptation under an Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license. You can copy and 
redistribute our material in any medium or format; you must give appropriate credit, 
provide a link to the license, and indicate if changes were made, and you may not 
apply additional restrictions. You may do so in any reasonable manner, but not in any 
way that suggests the licensor endorses you or your use. You may not use the 
material for commercial purposes. If you remix, transform, or build upon the material, 
you may not distribute the modified material. For more information, visit 
https://creativecommons.org/licenses/by-nc-nd/4.0/. 

  

https://creativecommons.org/licenses/by-nc-nd/4.0/


Welfare Losses from Wildfire Smoke: Evidence from
Daily Outdoor Recreation Data∗

Jacob Gellman†, Margaret Walls‡, Matthew Wibbenmeyer§

July 7, 2023

Abstract

Wildfire smoke pollution is growing in the western United States. Estimates of its

health impacts are numerous, but few revealed preference estimates of its damages ex-

ist. We study a setting where individuals are directly exposed to smoke, and avoidance

behavior is measured with high frequency: outdoor recreation. We combine millions of

administrative campground reservation records with satellite data on wildfire, smoke,

and air pollution. These data are rich among most studies of recreation, with nearly

1,000 campgrounds and detailed individual-level observations. The data allow us to

model sequential recreation decisions under evolving information using a novel control

function approach. We estimate that wildfire smoke reduces welfare by $107 per per-

son per trip. Damages are larger when campgrounds are affected by consecutive days

of smoke and attenuated when smoke events are sufficiently far from active fires. In

total, 21.5 million outdoor recreation visits in the western United States are affected

by wildfire smoke every year, with annual welfare losses of approximately $2.3 billion.

These findings contribute to a growing body of evidence on the costs of wildfire smoke.
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1 Introduction

Large wildfires have increased in frequency and severity in the western United States, and

these trends are expected to continue as the climate warms (Abatzoglou and Williams 2016;

Westerling 2016, 2018; Williams et al. 2019). This wildfire activity has generated con-

siderable increases in smoke, which can cover large geographic areas and affect air quality

hundreds of miles away. Wildfire smoke now accounts for up to half of particulate matter

pollution in some areas of the western United States (Burke et al. 2021), and some liter-

ature has found that its particulate emissions harm health more severely than particulate

emissions from other sources (Aguilera et al. 2021; Kochi et al. 2010). Empirical evidence

on the negative effects of wildfire smoke is growing, with studies finding increased morbidity

and mortality, negative effects on birth outcomes, reductions in academic performance, and

impacts in labor markets (Cullen 2020; Heft-Neal et al. 2023; Kochi et al. 2010; McCoy

and Zhao 2021; Miller et al. 2021; Reid et al. 2016; Wen and Burke 2022; Borgschulte et al.

2022).

Few estimates of the welfare costs of smoke exist, however, and those that do are based

on stated preference or survey-based methods (Richardson et al. 2012, 2013; Jones 2017) or

were calculated by applying a value of statistical life (VSL) to changes in mortality (Miller et

al. 2021). Welfare estimates derived from revealed preference methods are limited, perhaps

because smoke is challenging to study in a revealed preference setting. In hedonic property

value studies, it may be difficult to distinguish effects of long-run increases in wildfire smoke

from other unobserved region-level changes to housing markets. In travel cost recreation

studies, data at a high temporal resolution are needed to compare changes in behavior in

response to transient smoke conditions.

We use high-frequency data on outdoor recreation in a travel cost framework to provide

the first revealed preference estimates of welfare damages from wildfire smoke. Outdoor

recreation is advantageous for studying responses to smoke for several reasons. First, expo-

sure to smoke is high for recreationists. Wildfire season and peak outdoor recreation season

tend to coincide, with more than 1 million national park visitor-days per year taking place

during hazardous smoke conditions (Gellman et al., 2022). Second, visitors to recreation
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sites spend large amounts of time outdoors and tend to engage in vigorous activities, such

as hiking, which may exacerbate the effects of exposure (Korrick et al. 1998; Richardson

et al. 2012). Smoke can also reduce the visibility and amenity value from recreation trips.

Third, structural modeling of outdoor recreation decisions using the travel cost framework

can naturally yield welfare cost estimates (Parsons 2017; Lupi et al. 2020).

Our approach uses millions of administrative campground reservation records from nearly

1,000 federally managed campgrounds, which we combine with daily data on wildfire, smoke,

and air pollution. The data include information on campsite reservations, which are typically

made well in advance, and cancellations of planned trips. The cancellations data allow us to

account for the short-term and transient nature of wildfire smoke by focusing on decisions

made both before and after visitors have knowledge of air quality conditions at the site.

We model visitors’ reservation and cancellation decisions as a two-stage discrete choice.

In the first stage, a visitor chooses to reserve based on expected site conditions; in the second

stage, they decide whether to cancel based on realized site conditions. A key feature of this

setting is that reservations and cancellations are made in sequence; a visitor can only cancel

if they have a reservation, meaning they have already demonstrated a preference for the

site. This induces sample selection in the population holding reservations; if unaccounted

for, this would bias welfare estimates of wildfire smoke. To correct for this bias, we develop

a novel control function approach to link preferences across choices (Wooldridge 2015). The

control function uses estimated preferences from the first-stage reservation decision to remove

selection bias in the second-stage cancellation decision. We demonstrate the effectiveness of

this approach through numerical simulations.

We find that wildfire smoke imposes welfare costs of $107 per person per recreation trip.

Without accounting for sample selection using the control function, the analysis would have

implied damages of $154 per person per trip, overstating welfare impacts by 44 percent.

Damage estimates vary by the duration of smoke events, as measured by the number of

smoke-affected days in the week leading up to arrival. When a campground is affected by

smoke on only one day in the week of arrival, estimated damages are as low as $32 per person

per trip; but when it is affected on all seven days, losses are as high as $432 per person per

trip. The heterogeneity in our estimates is consistent with greater perceived likelihood of

3



experiencing smoke during weeks with more frequent smoke, more severe smoke impacts, or

potentially both. In the appendix, we report additional heterogeneity and robustness checks,

including a placebo for smoke, heterogeneous responses by distance to an active wildfire, and

heterogeneous responses by type of recreation site.

The overall magnitude of welfare losses from wildfire smoke is large. We find that in the

western United States, an average of 21.5 million outdoor recreation visits per year (approx-

imately 4.2 percent of all annual visits), which includes both camping and noncamping trips,

are affected by wildfire smoke on lands managed by the National Park Service, US Forest

Service, Bureau of Land Management, US Army Corps of Engineers, and states. Applying

the empirical welfare estimate of $107 per person per trip, this figure implies welfare losses

of roughly $2.3 billion per year.

Our study adds to the growing literature on wildfire and wildfire smoke. Several studies

have examined short-run consequences of smoke, finding that it increases emergency room

visits (Heft-Neal et al. 2023) and mortality (Miller et al. 2021), decreases labor earnings

(Borgschulte et al. 2022), and worsens expressed sentiment on social media (Burke et al.

2022; Loureiro et al. 2022). Some researchers have used survey evidence to estimate welfare

impacts of smoke. Based on US life satisfaction survey data, for example, Jones (2017)

estimates a willingness to pay (WTP) of $373 to avoid one wildfire smoke day per six-

month period. Richardson et al. (2012) employ a defensive expenditure approach using

survey data on air purifier purchases to estimate a WTP to reduce one smoke-induced health

symptom day of $84 (in 2009 dollars). Using a stated preference contingent valuation survey,

Richardson et al. (2013) estimate a WTP to avoid one smoke-induced symptom day of $95,

which they compare to an $87 WTP estimate based on a cost-of-illness approach (both

figures in 2009 dollars).

We measure the welfare damages of smoke exposure using cancellations of planned recre-

ation trips; our estimate of $107 per trip roughly translates to $38 per day. This value is

in line with estimates from Richardson et al. (2012, 2013) but considerably lower than the

estimate from Jones (2017). Compared to our aggregate welfare estimate of $2.3 billion per

year, Miller et al. (2021) value damages from mortality among elderly Medicare recipients

in the United States at $6–170 billion, depending on VSL assumptions. Borgschulte et al.
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(2022) find annual lost labor earnings of $125 billion per year due to wildfire smoke.

Measuring the cost of wildfire smoke is crucial to informing public policy. The federal

government spent an average of $2.8 billion per year on fire suppression between 2017 and

2021, and the State of California spent an average of $900 million per year from 2018 to

2022.1,2 California has proposed spending $1.2 billion over fiscal years 2022–23 and 2023–24

on wildfire mitigation measures, including vegetation management, prescribed burns, and

home hardening.3 These activities are consistent with the state’s recently declared goal

to treat 1 million acres of hazardous fuels per year.4 Together, the 2021 Infrastructure

Investment and Jobs Act (P.L. 117-58) and the Inflation Reduction Act of 2022 (P.L. 117-

169) provided $24 billion for federal wildfire programs (Goldman et al. 2022). Understanding

the welfare costs of wildfires and smoke is critical to assessing the benefit of these public

expenditures.

We also contribute to the recreation demand literature by using novel methods and data

sources. We value a transient environmental disamenity in a setting where users make deci-

sions under evolving sets of information. The two-stage choice structure that links preferences

across decisions is informed by literature on sample selection correction in nonlinear models

(Greene 2012; Terza 2009) and recreation contexts (Cameron and DeShazo 2013; Cameron

and Kolstoe 2022; Kolstoe and Cameron 2017; Lewis et al. 2019). Our framework could

be used to model sample selection or sequential choices in other nonlinear or discrete-choice

settings. It could also be applied to recreation studies valuing other short-lived environmen-

tal amenities, such as temperature and precipitation extremes or acute pollution events. In

addition to the modeling, our use of administrative data contributes to a recent literature

using new, large, or innovative data to study recreation across broad regions (Cameron and

Kolstoe 2022; Dundas and von Haefen 2020; English et al. 2018; Parthum and Christensen

1National Interagency Fire Center. Suppression Costs. https://www.nifc.gov/fire-information/

statistics/suppression-costs.
2California Department of Forestry and Fire Protection. Suppression Costs. https://www.fire.ca.

gov/stats-events.
3California Legislative Analyst’s Office. The 2022–23 Budget Wildfire and Forest Resilience Package.

https://lao.ca.gov/Publications/Report/4495.
4Agreement for shared stewardship of California’s forest and rangelands between the State of California

and the USDA Forest Service, Pacific Southwest Region. https://www.gov.ca.gov/wp-content/uploads/
2020/08/8.12.20-CA-Shared-Stewardship-MOU.pdf.
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2022).

The remainder of this paper is organized as follows. In Section 2, we describe the data

sources for the study, including recreation, smoke, fire, and pollution data. We also discuss

several descriptive features of the data. Section 3 describes the modeling approach, including

a conceptual framework and a description of the estimating dataset. In Section 4, we turn

to estimation, describing various sets of results. Section 5 appraises the total annual welfare

damages of wildfire smoke in the west. Section 6 concludes.

2 Data

We combine data on recreation behavior, travel costs, wildfire smoke, air pollution, wildfire

activity, and weather into three main datasets. The first is a daily panel of federally managed

campgrounds in the western United States, 2010–2017, that includes climate normals and

local daily measurements of smoke, wildfire activity, pollution, and weather. The second

dataset is a record of individual-level reservations for campgrounds, which we link to the

daily campground panel to show site conditions for users’ reservation dates. The last dataset

aggregates the individual users to measure daily reservation activity by distance from each

campground.

2.1 Recreation

We obtained data on campground use from Recreation.gov,5 the primary web portal for

reserving sites at federally managed campgrounds, including those managed by the National

Park Service, Bureau of Land Management, US Forest Service, US Army Corps of Engineers,

and Bureau of Reclamation. Figure A1 in Appendix A displays the web interface as a user

would experience it. The website gives users information about campground amenities,

prices, availability, and nearby points of interest.

The raw data include more than 90 million transactions from more than 7 million unique

users. We limit attention to campgrounds in the 11 western states, during the months of

May–September, and for the years 2010–2017, which leaves more than 16 million transactions

5Recreation.gov. https://www.recreation.gov.
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from 2 million unique users at 999 campgrounds. Our analysis is primarily concerned with

overnight camping and excludes, for instance, large-group or equestrian facilities.

The data give detailed information on reservations, walk-ins, cancellations, no-shows,

transaction dates, payments, refunds, zip code of origin, group size, user identifiers, and

other information. For every transaction in an order, such as a payment or cancellation, the

exact time is known. For the 999 campgrounds, 84 percent of transactions were made online,

9 percent over the phone, and 7 percent on-site (such as walk-ins or early checkouts).

2.2 Travel costs

We calculate travel costs based on the distance and travel time between a origin zip codes

and destination campgrounds with GraphHopper, an open source routing engine that uses

Djikstra’s algorithm and OpenStreetMap data.6,7 We calculate nearly 5.4 million routes

representing 5,379 origin points and 999 destinations. Our estimates reflect the fastest

routes by car between each origin and destination. Optimal routes generally match routes

identified by Google Maps during periods of low traffic. To identify the coordinates of each

user’s zip code, we match zip codes to Census Zip Code Tabulation Areas (ZCTAs) and find

the centroid of each ZCTA.8,9 Figure A2 in Appendix A displays an example route.

Following English et al. (2018), we calculate the per-person travel costs between ZCTA

z and campground j as

czjt =
pDztDzj

n
+ pTztTzj, (1)

for travel distance Dzj and travel time Tzj. The per-kilometer cost of traveling between

ZCTA z and campground j is given by pDzt and includes gasoline costs, per-kilometer ve-

hicle maintenance, and per-kilometer average vehicle depreciation. For gasoline costs, we

use state- and year-specific averages of per-kilometer gasoline costs during summer months,

6GraphHopper. https://www.graphhopper.com.
7GraphHopper GitHub. https://github.com/crazycapivara/graphhopper-r.
8Health Resources and Services Administration, John Snow, Inc., and American Academy of Family

Physicians. Uniform Data System. https://udsmapper.org/zip-code-to-zcta-crosswalk.
9Because ZCTA centroids may not be located along roads, we snapped them to the nearest road using

Census TIGER/Line shapefiles and used the nearest points along roads as origin points.
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based on per-gallon gasoline costs from the Energy Information Administration and nation-

wide average fleet fuel economy.10,11 We use per-kilometer average depreciation and vehicle

maintenance costs from AAA data, as in English et al. (2018).12 Last, we measure hourly

costs of travel time pTzt as one-third of the average household income in ZCTA z divided by

2,080 hours worked per year (English et al. 2018). All numbers are inflation-adjusted to

2020 US dollars.

2.3 Smoke and air pollution

Our measure of smoke impacts combines satellite-derived wildfire smoke plume data and

gridded ground-level PM2.5 monitoring data. For each day, we record whether a camp-

ground was covered by smoke based on daily observations of smoke plumes from the National

Oceanic and Atmospheric Administration (NOAA) Hazard Mapping System (Schroeder et

al. 2008).13 Each day, NOAA analysts manually trace the perimeters of smoke plumes using

satellite photography, producing daily shapefiles. These data have been used in studies ex-

amining the effect of smoke on air pollution, health, labor markets, self-protective behavior,

and crime (Borgschulte et al. 2022; Burke et al. 2021, 2022; Burkhardt et al. 2019; Cullen

2020; Gellman et al. 2022; Heft-Neal et al. 2022; Miller et al. 2021; Preisler et al. 2015).

One challenge presented by this dataset is that satellite photography does not reveal

where in the air column a smoke plume is: it could be at the ground level or high in the

atmosphere. If the latter, it may not reflect on-the-ground conditions. To address this

challenge, we code an area as smoke affected only if it is covered by a smoke plume and its

ground-level PM2.5 is above at least 1.64 standard deviations of the location-specific seasonal

mean for nonsmoke days, which represents the 95th percentile of a normal distribution

(Burkhardt et al. 2019; Gellman et al. 2022).14 Figure A3 in Appendix A displays an

example of that restriction using kriged PM2.5 data from Burkhardt et al. (2019). The map

10Energy Information Administration. Weekly Retail Gasoline and Diesel Prices. https://www.eia.gov/
dnav/pet/pet_pri_gnd_a_epmr_pte_dpgal_m.htm.

11Bureau of Transportation Statistics. Average Fuel Efficiency of US Light Duty Vehicles. https://www.
bts.gov/content/average-fuel-efficiency-us-light-duty-vehicles.

12For example: AAA. Your Driving Costs 2016. https://publicaffairsresources.aaa.biz/

wp-content/uploads/2016/03/2016-YDC-Brochure.pdf.
13NOAA. Hazard Mapping System. https://www.ospo.noaa.gov/Products/land/hms.html.
14A “season” is defined as fall, winter, spring, or summer.

8

https://www.eia.gov/dnav/pet/pet_pri_gnd_a_epmr_pte_dpgal_m.htm
https://www.eia.gov/dnav/pet/pet_pri_gnd_a_epmr_pte_dpgal_m.htm
https://www.bts.gov/content/average-fuel-efficiency-us-light-duty-vehicles
https://www.bts.gov/content/average-fuel-efficiency-us-light-duty-vehicles
https://publicaffairsresources.aaa.biz/wp-content/uploads/2016/03/2016-YDC-Brochure.pdf
https://publicaffairsresources.aaa.biz/wp-content/uploads/2016/03/2016-YDC-Brochure.pdf
https://www.ospo.noaa.gov/Products/land/hms.html


shows that although many areas were covered by smoke, only some had air quality poor

enough to be coded as smoke affected.

2.4 Wildfire activity

At each campground, we measure the daily distance to an actively burning fire. We combine

NASA MODIS fire detection points with the United States Geological Survey Monitoring

Trends in Burn Severity (MTBS) fire perimeter dataset.15,16 The MODIS detection points

record 1 km centroids of fire activity at a daily resolution, including agricultural and pre-

scribed fires (Giglio et al. 2016). The MTBS data map the final perimeters for US wildfires.

Combining these data has two advantages. First, the use of known wildfire perimeters filters

out any MODIS points not associated with a large wildfire. Second, the MODIS detection

points limit attention only to the portion of a wildfire that was burning on a given day. We

use a 1 km buffer around the fire’s final perimeter and its start and containment dates to

filter MODIS points. Figure A5 in Appendix A demonstrates an example of this process for

the western United States.

2.5 Temperature and precipitation

To control for weather conditions, we gather daily precipitation (mm) and maximum and

minimum temperature (◦C) for every campground. These data are published at a 4 km

resolution by the PRISM Climate Group at Oregon State University.17 In addition, at each

campground, we record 30-year climate normals that reflect average conditions for 1980–2010.

2.6 Descriptive features of the data

Of the 999 campgrounds in the analysis, 908 are managed by the US Forest Service, 50 by

the National Park Service, 31 by the US Army Corps of Engineers, 5 by the Bureau of Land

Management, and 5 by the Bureau of Reclamation; Figure A6 in Appendix A plots a map of

15NASA. Earthdata. https://earthdata.nasa.gov.
16USGS. Monitoring Trends in Burn Severity. https://www.mtbs.gov.
17Northwest Alliance for Computational Science and Engineering, Oregon State University. PRISM Cli-

mate Data. https://www.prism.oregonstate.edu.
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Figure 1: Driving Distance and Time between Reservation and Scheduled Arrival
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Note: Panel A shows the one-way driving distance of reservations from the destination campground, where
the red line indicates a 650 km cutoff. Panel B displays the distribution of time reserved in advance of arrival
date).

these. Although the Forest Service manages most of the campgrounds, the most-visited ones

tend to be in national parks. Table A1 in Appendix A reports the most-visited campgrounds.

For the main analysis, we restrict the set of potential reservers to residents living within

one day’s driving distance of a given campground. We set this restriction at 650 km (400

miles). English et al. (2018) report survey results showing that, beyond 500 miles of driv-

ing distance, a substantial portion of recreation visitors are likely to have flown to their

destination, which adds additional complications to the calculation of travel cost. Panel A

of Figure 1 shows that our 650 km restriction results in including more than 85 percent of

reservations in the dataset. Half of our observed trips come from within 250 km (155 miles),

and three-quarters come from within 450 km (280 miles). Appendix H reports the main

results using alternative driving distance thresholds.

The timing of a reservation is also key for our setting. Wildfire smoke is a random

event, meaning that visitors who reserve far in advance do not know whether their chosen

campground will be smoke affected during their visit. Panel B of Figure 1 shows that most

visitors reserve far in advance, consistent with results in Walls et al. (2018). Although a

plurality of visitors reserve within a week of arrival, a majority reserve early. In addition,

a significant mass appears around six months in advance, which is the earliest that some
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popular destinations allow reservations. In the following section, we describe our modeling

approach to study the cancellation decisions of visitors who reserved ahead of time.

3 Modeling approach

In this section, we model an individual’s decision to visit a campground under smoke and

nonsmoke conditions. A key feature of this setting is that smoke is ephemeral; it is not a

permanent feature of site quality but may impact air quality suddenly and without warning

for several days or weeks. Given this, one estimation strategy might be to contrast reservation

rates during smoky and nonsmoky periods.18 However, because demand for campgrounds

is high, campers must often make reservations far in advance, before smoke conditions are

known. As campgrounds are often completely full shortly before a given date, rates of new

reservations may not be responsive to smoke.

We therefore consider the cancellation decisions of visitors who reserved ahead of time.

The population that is eligible to cancel consists of those that already hold a reservation;

therefore, the sample is selected due to their demonstrated preference for the site. We account

for selection bias induced by the reservation decision using a control function approach that

explicitly models and estimates the “first-stage” reservation decision, in which visitors choose

whether to reserve based on expected site conditions. In the second stage, close to the arrival

date, they decide whether to cancel based on realized site conditions. Figure 3 illustrates the

timing of these decisions, where t gives the arrival date and τ denotes a bandwidth sufficiently

close to the arrival date. Our control function uses preference parameters estimated in the

first stage to remove selection bias in the second stage.

Figure 3: Timing of Decisions

tt− τ

Expected conditions Realized conditions

︸ ︷︷ ︸
Cancellations

︸ ︷︷ ︸
Reservations

18For a discussion of late reservers, see Appendix B.
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3.1 Reservations

Define utility from visiting site j at time t as

Uijt = Vijt + εijt + υijt, (2)

where Vijt gives the observable portion of utility to household i from visiting campground

j on date t, εijt represents fixed unobserved preferences of household i for visiting site j at

time t, and υijt represents unobserved shocks to preferences that occur between time t − τ

and time t. Let Vijt be specified according to

Vijt =

δcijt + ϕsjt +X ′
jtγ + ψj + λt, j ∈ {1, 2, ..., J};

0, j = 0,

(3)

where cijt gives the travel cost for person i to site j at time t, and sjt represents smoke

conditions at campground j on date t. The vector Xjt includes time-varying, campground-

level conditions, such as precipitation, temperature, and proximity to an active wildfire.

Additional variables include ψj and λt, which account for site- and time-specific fixed effects,

respectively. Campground fixed effects capture time-invariant traits, such as quality or

desirability. Time fixed effects, such as for year, week-of-year, and day-of-week, account for

seasonality and trends in preferences over time. The parameter of interest is the WTP to

avoid smoke, which is found by taking the ratio of marginal disutility of smoke ϕ to the

marginal disutility of expenditure δ, WTP = ϕ/δ.

When making a reservation at an early date, person i knows their fixed unobserved

preference for the site εijt but not what site conditions or the shock υijt will be. Therefore,

they choose based on εijt and an expectation of Vijt; in expectation, υijt is 0. Denoting the

expectation of variable Y at the time of reservation as Ȳ , write the expectation of Vit as

V̄ijt =

δcijt + ϕs̄jt + X̄ ′
jtγ + ψj + λt, j ∈ {1, 2, ..., J};

0, j = 0.

(4)

At the time of reservation, an individual’s expected utility from visiting site j at time t is
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V̄ijt+εijt, where εijt is known to the individual but unobserved by the econometrician. From

the perspective of the individual, the expected value of υijt is 0. Let Rijt = 1 if an individual

chooses to make a reservation to visit site j at time t. Individuals choose Rijt = 1 if the

expected utility of doing so exceeds the utility of their outside option, the observable portion

of which we normalize to 0. Under the assumption that εijt is distributed iid type I extreme

value, the probability an individual makes a reservation is given by

P(Rijt = 1) = P(εi0t − εijt ≤ V̄ijt) =
exp(V̄ijt)

1 + exp(V̄ijt)
. (5)

For each campground j and day t, we sum the number of reservers and nonreservers in

concentric zones z around a campground. The former (denoted N1
zjt) is counted based on

the reservations in the Recreation.gov dataset; for example, a reservation for four people is

counted as four reservers. The nonreservers (N0
zjt) are determined based on zip code–level

populations within each concentric ring, less the number of people from each zip code that

held a reservation to a different campground on that day. The unit of observation for the

zonal estimation is a campground by day by 50 km distance bin, where each row of data

reports the number of people choosing outcome variable Rijt ∈ {0, 1}. Let ω denote the

set of parameters {δ, ϕ, γ, ψj, λt}. Summing the individual log-likelihood function over all

reservers and nonreservers in each zone and for each campground and date, the log-likelihood

function is given by

ℓR(ω) =
Z∑

z=1

J∑
j=0

T∑
t=1

N1
zjt log

(
P(Ri(z),j,t = 1|ω)

)
+N0

zjt log
(
1− P(Ri(z),j,t = 1|ω)

)
, (6)

for Z zones, T choice occasions, and J sites. Maximizing Equation 6 yields utility parameters

for a representative individual i from zone z.

We use a zonal approach for the reservation decision for several reasons. The primary

purpose of this first-stage reservation estimation is to construct a control function that

accounts for preferences in the cancellation estimation. A person can only cancel a trip if

they held a reservation. Therefore, preferences from the reservation decision likely play a

role in the cancellation. The zonal reservation model accounts for these preferences and

13



provides computational advantages over a multinomial logit approach. In this setting, we

have more than 1,200 arrival dates to define choice occasions, nearly 5 million reservations,

nearly 5,400 zip codes to account for the nonreserving individuals, and 999 campgrounds to

form the choice set. It would be infeasible to use all the data in a multinomial logit model of

individual site choice. We could reduce the size of the dataset by, for example, restricting the

study to a single region or year. However, smoke is temporally and spatially correlated within

regions, meaning that we require multiple regions and years to provide necessary variation

and that site substitution is less likely to play a role in identifying the smoke parameter (see

Appendix C). Because we require regional and temporal variation, fixed effects are crucial to

remove location- and time-specific unobservables across many heterogeneous sites. The zonal

model accommodates a high number of fixed effects and is computationally less expensive

than the contraction mapping method used in many multinomial logit studies (Berry 1994).

This computational speed makes a difference when bootstrapping standard errors in the

two-stage model.

3.2 Cancellations

For the second-stage cancellation decision, we model a binary choice at the level of the

individual trip.19 At time t− τ , site conditions are realized and approximately known to the

individual, resulting in random shock eijt ≡ Vijt − V̄ijt + υijt to the utility of site visitation.

The shock eijt includes realization of the actual (Vijt) as opposed to mean (V̄ijt) smoke

and other weather conditions and a random idiosyncratic and individual-specific taste shock

(e.g., illness) represented by υijt. Like εijt, we assume υijt is distributed type I extreme value.

However, we allow its standard deviation to differ from the standard deviation of εijt by a

scale factor of 1
ρ
, letting υijt ≡ 1

ρ
ηijt where ηijt is distributed standard type I extreme value.

19An alternative would have been to model a choice to cancel and rebook at another campground. In
Appendix C, we show that very few users do so for the same choice occasion. Close to the arrival date, many
campgrounds are fully booked, which can prevent site substitution. In addition, because smoke conditions are
spatially and temporally correlated among potential alternatives, substitution is unlikely to be an important
factor in the identification of the smoke parameter, given low variation in smoke conditions.
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Conditional on having a reservation, individual i follows through on their reservation if

V̄ijt + εijt + eijt ≥ εi0t + ei0t. (7)

Using the definition of eijt, and letting Cijt be a binary variable equal to 1 if individual i

cancels their reservation within τ days of arrival, the probability that i follows through is

P(Cijt = 0|Rijt = 1) = P(Vijt + εijt + υijt ≥ εi0t + υi0t)

= P(ηi0t − ηijt ≤ V̇ijt − ρ(εi0t − εijt)), (8)

where the second line follows from the definition of υijt and where V̇ijt = ρVijt, a rescaling.

Equation 8 presents challenges for the econometrician. The variables εi0t and εijt are

unobserved. However, omitting these variables will bias parameter estimates because they

are correlated with Vijt, as only households with high taste for the site (εijt) will have made

a reservation. Specifically, εijt is correlated with travel cost in the selected sample; for

individuals with a high travel cost cijt, selection into the group of reservers implies a higher

εijt. Without sample selection correction, this relationship downward biases estimates of the

travel cost parameter δ in the cancellation decision and thus inflates estimates of WTP =

ϕ/δ. Section 3.4 explores this relationship using a numerical example. We show that the bias

arises only when unobserved preferences from the first stage affect the second-stage decision

(εi0t − εijt ̸= 0 in Equation 8) and when we can only observe the cancellation decision for

the selected sample of reservers (Rijt = 1).

3.3 Control function

To correct for this bias, we develop a control function approach (Wooldridge 2015). We begin

by noting the conditional distribution of (εi0t − εijt) in the selected sample of reservers. Let

f(·) be the logistic density and F (·) the logistic distribution and define ε̃ijt ≡ (εi0t − εijt).
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The conditional density of ε̃ijt is

f( ε̃ijt | Rijt = 1) = f( ε̃ijt | ε̃ijt ≤ V̄ijt − V̄i0t)

=
f(ε̃ijt) · 1{ε̃ijt ≤ V̄ijt − V̄i0t}

F (V̄ijt − V̄i0t)

=
f(ε̃ijt) · 1{ε̃ijt ≤ V̄ijt}

P(Rijt = 1)
, (9)

where the first line follows from the reservation condition in Equation 5, the second from the

definition of a truncated density, and the third by noting that Vi0t = 0 and that F (V̄ijt) =

P(Rijt = 1).

An estimand for ε̃ijt is given by

E[ ε̃ijt | ε̃ijt ≤ V̄ijt] =

∫ ∞

−∞
ε̃ijt f(ε̃ijt | ε̃ijt ≤ V̄ijt]) dε̃ijt

=

∫ V̄ijt

−∞ ε̃ijt f(ε̃ijt) dε̃ijt

P(Rijt = 1)

=
V̄ijt · exp(V̄ijt)

1+exp(V̄ijt)
− log(1 + exp(V̄ijt))

P(Rijt = 1)

=
V̄ijt · P(Rijt = 1)− Iijt

P(Rijt = 1)

= V̄ijt −
Iijt

P(Rijt = 1)
. (10)

The first line follows from the definition of a conditional expectation, the second by substi-

tuting in Equation 9, the third by evaluating the definite integral, the fourth by substituting

Equation 5 and defining Iijt ≡ log(1 + exp(V̄ijt)), and the last through simplification.

Equation 10 contains familiar terms. The V̄ijt term gives the expected utility of the

site choice from the reservation decision. The second term contains the inclusive value Iijt,

which is equivalent to the expected maximal utility a visitor could expect from holding the

reservation, including the value of either the trip or the cancellation (Train 2009). The Iijt
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term is scaled by the inverse of the probability that they would reserve at the site; higher

reservation probabilities result in higher estimates of preferences ε̃ijt.

Including ε̃ijt as a control function within Equation 8 provides an estimate of the un-

observed preferences of individual i and allows for unbiased estimation of the travel cost

parameter in the cancellation problem. As travel cost is positively correlated with εijt, we

expect that it is negatively correlated with ε̃ijt ≡ (εi0t − εijt). We also expect a higher value

of ε̃ijt to increase the likelihood of cancellation, as in Equation 8. In Section 3.4, we illustrate

the bias correction of this control function through a numerical example.

Estimation of the cancellation decision proceeds through the following two-stage process.

First, we estimate the parameters of the reservation decision P(Rijt = 1) by maximizing

a zonal log-likelihood function as in Equation 6, for reservations made earlier than t − τ

and using expected site conditions. Then, we use the parameters to create a fitted value

ˆ̃εijt for every observed reservation. We substitute them into the trip-level equation for the

cancellation decision, where each row of data is a trip with a dependent variable Cijt ∈ {0, 1}

indicating whether the user cancelled. In this second stage, the independent variables in

Vijt use realized rather than expected site conditions, as users approximately know the site

conditions close to the arrival date. For individual i, the log-likelihood function for the

cancellation decision is

ℓC(ω, ρ) =
N∑
i=1

J∑
j=0

T∑
t=1

(1− Cijt) log
(
P(Cijt = 0|ω, ρ,Rijt = 1)

)
+

Cijt log
(
1− P(Cijt = 0|ω, ρ,Rijt = 1)

)
. (11)

Because of the two-stage estimation, we bootstrap the main estimates to obtain appropriate

standard errors (Cameron and Miller 2015; Wooldridge 2015).

3.4 Numerical example

To illustrate the source of bias in näıve cancellation estimates and the ability of our control

function estimator to correct for this bias, we test our estimator on simulated data. We sim-

ulate 10,000 draws with N = 100, 000 users (individuals i) who make sequential reservation
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and cancellation decisions. We assign each user random travel costs, smoke conditions, and

unobserved preferences εijt and υijt. We assert an arbitrary true WTP to avoid smoke of

ϕ/δ = 2. Appendix D provides additional details.

Table 1 summarizes results from the simulation and illustrates two dimensions of the

identification challenge. First, we test the role of sample selection, using the fact that in

simulated data, we can observe the counterfactual cancellation decisions of users who never

held a reservation. In Column 1, we estimate WTP based on the full sample of reservers

and nonreservers. With no sample selection (the sample is not limited to reservers), our

estimate approaches 2, the true WTP. In Column 2, the sample is limited to reservers, but

we model cancellation and reservation decisions as independent, conditional on observables.

That is, unobserved preferences affecting reservation decisions do not affect cancellation

decisions, and second-stage unobserved preferences are equal to 1
ρ
η rather than εit +

1
ρ
η.

Under this assumption, our estimate is again nearly equal to the true WTP. It is only in

Column 3, when the sample is selected and preferences in the first and second stages are

not conditionally independent, that WTP is biased. In Appendix D, we discuss how this

bias operates through correlation between preferences and travel cost in the selected sample,

which attenuates estimates of the travel cost parameter. In Column 4, we maintain both

assumptions from Column 3 but also introduce our control function for ε̃ijt. Across Monte

Carlo simulations, the control function corrects the bias and includes the true WTP in the

confidence interval. For a full treatment, refer to Appendix D.

Table 1: Numerical Example for 10,000 Simulations of Cancellation Estimation, Bias, and
Bias Correction from ε̃ijt Control Function

(1) (2) (3) (4)

WTP 2.01** 2.01** 6.70 2.00**
(0.14) (0.15) (8.52) (0.25)

Sample All users Reservers Reservers Reservers
Second-stage errors εijt +

1
ρ
ηijt

1
ρ
ηijt εijt +

1
ρ
ηijt εijt +

1
ρ
ηijt

Control function No No No Yes

Notes: True willingness to pay (WTP) = 2. WTP values are means
(with standard errors in parentheses) across estimates from M = 10,000

simulations with N = 100,000. * p < 0.05, ** p < 0.01.
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4 Estimation

In this section, we estimate the welfare damages of wildfire smoke for outdoor recreation.

As discussed in the previous section, the estimation follows a two-stage process that links

reservations to cancellations close to arrival. Figure 3 shows the timing of decisions. We

restrict the data to the set of users who booked more than a week ahead of time, or τ = 7

in Figure 3, and decided whether to cancel within a week of the arrival date. We therefore

exclude reservations that were cancelled more than a week in advance. We also focus on

trips scheduled for the months of May–September and over the years 2010–2017. Last, we

limit attention to trips coming from within 650 km (400 miles), as described in Section 2.6.

These restrictions result in a sample of 2,723,940 reservations.20

4.1 Cancellations close to arrival

Figure 4 displays how the cancellation rate varies by travel cost and wildfire smoke conditions.

The figure shows that users cancel their trips at higher rates during smoke conditions. This

relationship does not appear to vary by travel cost, as the distance between the red and blue

points is relatively constant across travel cost bins. Visually, the slope between cancellation

rate and travel cost appears shallow. As explored in Section 3 and Appendix D, this shallow

slope is likely due to positive correlation between travel cost and the unobserved preference

parameter εijt among the selected sample of reservers. Intuitively, if we were to observe

someone reserve at site j despite a high travel cost, on average, they should have a higher

preference εijt for the site than someone with a similar travel cost who did not reserve, such

that E[εijtcijt|Rijt = 1] > 0. If ignored, we expect this correlation to depress the magnitude

of the travel cost coefficient in the estimation of cancellations P(Cijt = 0|Rijt = 1), which

translates to a shallow slope in Figure 4.

20A “reservation” or “trip” is composed of multiple “transactions,” which could include an initial booking,
payment, check-in, cancellation, or refund.
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Figure 4: Cancellation Rate Close to Arrival
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Table 2 reports results for biased estimation of cancellations P(Cijt = 0|Rijt = 1) using

the trip-level maximum likelihood function of Equation 11. These estimates ignore the

correlation between εijt and travel cost among the set of users who chose to reserve. WTP

is computed by taking the ratio between marginal disutility of smoke to that of expenditure

(the smoke coefficient divided by the travel cost coefficient). Standard errors for WTP are

computed using the delta method. In all estimations, the observations are weighted via

frequency weights because a single reservation might represent, for example, two or eight

visitors.

In Column 1, we display results without controlling for campground or seasonal fixed

effects. Columns 2–4 add fixed effects. We include a campground fixed effect to account

for location-specific, time-invariant unobservables related to site quality. We also account

for differences in reservation rates based on the day of the week, as weekends see higher

reservation activity. A campground-by-week fixed effect controls for unobserved location-

specific seasonality, such as seasonal natural phenomena. Last, we include various year fixed

effects to account for time-related unobservables. Column 4 would imply that wildfire smoke

causes $154 in lost welfare per person per trip. This result is likely upward biased because

WTP = ϕ/δ, and we expect the travel cost parameter δ to be attenuated.
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Table 2: P(Cijt = 0|Rijt = 1) Within One Week, Uncorrected for Sample Selection

(1) (2) (3) (4)

Smoke in week of arrival -0.2195** -0.2615** -0.2346** -0.2615**
(0.0238) (0.0283) (0.0273) (0.0215)

Travel cost (dollars) -0.0024** -0.0017** -0.0017** -0.0017**
(0.0003) (0.0001) (0.0001) (0.0001)

Inv. distance to wildfire (km−1) -11.1276** -12.0389** -11.9174** -7.8003**
(0.9266) (2.4288) (2.4432) (0.8291)

High temp. (degrees C) 0.0198** 0.0287** 0.0292** 0.0307**
(0.0045) (0.0023) (0.0023) (0.0022)

Low temp. (degrees C) -0.0033 -0.0205** -0.0214** -0.0253**
(0.0058) (0.0025) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0041** -0.0058** -0.0060** -0.0057**
(0.0011) (0.0009) (0.0009) (0.0009)

N 2,723,830 2,692,468 2,692,468 2,689,216
WTP 91.1** 153.4** 137.35** 154.04**

(12.36) (21.06) (19.85) (15.43)

Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

To correct for the biased WTP in Table 2, we use the control function described in

Equation 10, ε̃ijt = V̄ijt− Iijt
P(Rijt=1)

. The first step is to estimate the probability of reservation

earlier than one week based on expected site conditions and using a zonal travel cost model.

Then, we fit the parameters from the reservation estimation to form an estimate for ε̃ijt.

This estimate is used as a covariate in the trip-level estimation of cancellations P(Cijt =

0|Rijt = 1), after site conditions become approximately known to visitors.

We construct expected site conditions in the following way. For temperature and pre-

cipitation, we use climate normals from our PRISM data source, which represent average

weather conditions for 1980–2010. Because travel cost is likely known to the individual ahead

of time, we use the visitor’s actual travel cost. For expected smoke and expected distance

to fire, we use the average conditions over the past four years. For example, if a site was
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affected by smoke for one out of the past four years, we code expected smoke as 0.25.

Table 3 shows results from the first-stage reservation decision P(Rijt = 1) implied by

Equation 6. Users appear unexpectedly more likely to reserve at a campground with a

higher expectation of wildfire smoke. Including more fixed effects generally decreases the

magnitude and significance of the estimate, including moving the WTP closer to 0. Still,

even with a high number of seasonal fixed effects, we may be unable to remove the correlation

of seasonal variation in camping with wildfire smoke. Nevertheless, the primary purpose to

estimate the likelihood of reservation P(Rijt = 1) is as an input for the control function ε̃ijt

in the estimation of P(Cijt = 0|Rijt = 1), so we should be unconcerned by the direction of

the smoke expectation parameter.

Table 3: P(Rijt = 1) for Reservations Made Earlier Than One Week Based on Expected Site
Conditions

(1) (2) (3) (4)

Smoke exp. 0.9260** 0.2513** 0.1032** 0.0822*
(0.0036) (0.0423) (0.0363) (0.0324)

Travel cost (dollars) -0.0202** -0.0244** -0.0244** -0.0244**
(0.0000) (0.0013) (0.0013) (0.0013)

Inv. distance to wildfire exp. (km−1) 39.6901** 6.0569** 6.1590** 6.7856**
(0.0742) (1.7451) (1.5707) (1.4654)

High temp. exp. (degrees C) 0.0191** 0.0597** 0.0611** 0.0588**
(0.0001) (0.0130) (0.0131) (0.0126)

Low temp. exp. (degrees C) -0.0191** -0.0818** -0.0835** -0.0812**
(0.0001) (0.0153) (0.0153) (0.0148)

Precip. exp. in week of arrival (mm) -0.0126** 0.0071** 0.0066* 0.0067*
(0.0001) (0.0027) (0.0027) (0.0027)

N 15,209,187 12,668,366 12,668,366 12,298,572
WTP -45.93** -10.31** -4.23** -3.37*

(0.18) (1.72) (1.45) (1.31)

Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

After zonal estimation of P(Rijt = 1) for early reservers, we use the parameter estimates
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to create fitted probabilities of reservation at the trip level. Figures A8 and A9 in Appendix A

show the variation in fitted probability P(Rijt = 1) and in the control function ε̃ijt. We expect

that preferences and travel costs are correlated in the selected sample, E[cijtεijt|Rijt = 1] > 0,

so our control function should be inversely correlated with travel cost, E[cijt(εi0t−εijt)|Rijt =

1] < 0. Figure A10 in Appendix A illustrates this correlation empirically using the fitted

values of ε̃ijt and the travel cost for the sample of reservers. This empirical result is consistent

with the prediction of our theory and numerical exercise in Section 3 and Appendix D.

Table 4 reports the main trip-level results for the cancellation estimation P(Cijt =

0|Rijt = 1) using the bias correcting control function ε̃ijt. The coefficient for ε̃ijt is sig-

nificant, suggesting that preferences at the time of reservation are an important determinant

of the cancellation decision. In addition, comparing to Table 2, the travel cost coefficient was

the only parameter to change when including ε̃ijt, which is consistent with sample selection

bias operating through correlation with travel cost. Overall, the WTP estimates are reduced

to $107 per person per trip of lost utility due to cancellations. By comparison, the biased

results in Table 2 were $154 per person per trip, which is 44 percent higher.

Wooldridge (2015) recommends bootstrapping standard errors for control functions be-

cause of the two-stage estimation process. For the main estimates in Table 4, we follow the

clustered bootstrapping process of Cameron and Miller (2015), drawing with replacement at

the campground level for 400 bootstraps. In Appendix E, we report results from Shapiro-

Wilk tests for normality, failing to reject the null hypothesis that the bootstrapped smoke

coefficients and travel cost coefficients are normally distributed. These tests suggest that

400 bootstraps are adequate for the analysis.

4.2 Relationship of damages to smoke duration

In this section, we investigate how estimated welfare losses vary according to one measure

of the severity of smoke impacts: the number of smoke days in the week of arrival. We

hypothesize that welfare impacts could vary with this measure for two reasons. First, it

is likely that sites experiencing a greater number of smoke days in close succession also

experience a larger degradation in air quality. Second, additional smoke days in the week of
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Table 4: P(Cijt = 0|Rijt = 1) Within One Week, Corrected for Sample Selection

(1) (2) (3) (4)

Smoke in week of arrival -0.2175** -0.2708** -0.2438** -0.2603**
(0.0247) (0.0238) (0.0221) (0.0218)

Travel cost (dollars) -0.0026** -0.0024** -0.0024** -0.0025**
(0.0004) (0.0003) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -11.1017** -10.8883** -10.7067** -7.8141**
(0.8580) (1.4280) (1.4288) (0.7920)

High temp. (degrees C) 0.0202** 0.0284** 0.0289** 0.0306**
(0.0043) (0.0024) (0.0024) (0.0023)

Low temp. (degrees C) -0.0037 -0.0204** -0.0214** -0.0252**
(0.0052) (0.0026) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0041** -0.0058** -0.0060** -0.0057**
(0.0010) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0112 -0.0356** -0.0366** -0.0385**
(0.0284) (0.0106) (0.0105) (0.0106)

N 2,723,034 2,691,655 2,691,655 2,688,739
WTP 85.23** 113.91** 101.50** 107.14**

(17.82) (18.48) (16.50) (16.33)

Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Bootstrapped std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

arrival communicate a higher likelihood of smoke on the actual arrival date.21

To investigate heterogeneity in estimated welfare impacts, we respecify P(Cijt = 0|Rijt =

1) to allow for differential effects based on the number of smoke-affected days in the week

of arrival. Figure 5 plots the resulting WTP estimates.22 Damages monotonically increase

in the number of smoke days, giving confidence that the estimates reflect damages from

smoke. When a campground was affected by smoke on all seven days in the week of arrival,

we find welfare damages of $432 per person per trip. Estimated welfare impacts are likely

21Table A2 in Appendix A reports results from a regression of 1{campground is smoke-affected} on indi-
cator variables for one, two, ..., seven days of smoke in the week before arrival. Each additional smoke day
increases the probability of smoke on the actual day of arrival. For instance, compared to a week with no
smoke days, a week with two days raises the probability by 0.301; a week with six days raises it by 0.739.

22Full results are included in Table A3 in Appendix A.
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greater during more smoke-affected weeks due to worse air quality conditions or because the

perceived likelihood of smoke during the visit is greater.

Figure 5: Greater Welfare Damages for Weeks That Were More Smoke Affected, Consistent
with Either More Severe Events or Increased Certainty of Smoke Conditions
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4.3 Placebo test for smoke

As a robustness check, we devise a placebo test to check whether the smoke coefficient

actually measures responses to smoke. The placebo considers the responses of visitors whose

campground was not affected by smoke until one or two weeks after their arrival. If visitors

are truly averting recreation due to smoke, then we should see no response to these placebos.

Of the 2.38 million reservations without smoke in the week of arrival, more than 375,000

placebo reservations are created.

Table 5 displays results from the placebo test. Across the main specifications, we find

null responses to the two smoke placebos. Comparing to Table 4, most coefficients remain

the same for this placebo test. This exercise should add confidence that individuals are

actually responding to smoke in the main estimation.
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Table 5: Placebo Test for P(Cijt = 0|Rijt = 1) Using Smoke Long After Arrival

(1) (2) (3) (4)

Smoke in week after arrival 0.0874** 0.0248 0.0226 0.0066
(0.0190) (0.0163) (0.0155) (0.0159)

Smoke two weeks after arrival 0.0783** 0.0041 0.0034 -0.0042
(0.0231) (0.0147) (0.0146) (0.0156)

Travel cost (dollars) -0.0027** -0.0025** -0.0025** -0.0025**
(0.0004) (0.0003) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -8.5921** -7.3229** -7.2413** -5.2047**
(0.8373) (0.8998) (0.8823) (0.7795)

High temp. (degrees C) 0.0201** 0.0294** 0.0285** 0.0303**
(0.0043) (0.0022) (0.0022) (0.0022)

Low temp. (degrees C) -0.0010 -0.0184** -0.0184** -0.0221**
(0.0057) (0.0026) (0.0026) (0.0025)

Precip. in week of arrival (mm) -0.0039** -0.0062** -0.0062** -0.0058**
(0.0011) (0.0009) (0.0009) (0.0010)

ε̃ijt -0.0089 -0.0332** -0.0337** -0.0352**
(0.0262) (0.0123) (0.0122) (0.0124)

N 2,379,842 2,344,620 2,344,620 2,340,894
Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

4.4 Additional results and robustness checks

We report several additional results and robustness checks in the appendices. The first

analysis explores how results differ when excluding observations with nearby active wildfires.

In addition, we assess the role of no-shows in the estimation of cancellation probability. A

third exercise varies the distance threshold that defines the sample restriction. We also vary

the temporal threshold to consider cancellations. Last, we show how results vary by the

popularity of the recreation destination.

The literature has found that visitors to national parks are less avoidant of wildfire

smoke that originates from distant sources (Cai 2021). In Appendix F, we investigate how

nearby active wildfires affect the main estimates. Although the main estimation controls for
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proximity to active wildfire, one might still be concerned that individuals avoid recreation

due to fire rather than smoke. If smoke days are highly correlated with nearness to fire, it

could increase the estimated smoke coefficient and inflate WTP. To address this possibility,

we reestimate the main specifications but remove observations with a nearby active fire.

When removing observations with a fire within 20 km (12 miles), we find reduced welfare

damages of $85. These results are consistent with the broader findings of Cai (2021).

Another concern when studying cancellations is whether an individual will formally cancel

or simply not show up. For most campgrounds, we do not observe whether an individual

checks in. However, campers have an incentive to cancel their reservation. For cancellations

made more than 24 hours before the arrival date, visitors are reimbursed for the full cost less

a $10 cancellation fee; when cancelling within 24 hours of arrival, they are reimbursed for the

full trip less the $10 fee and the price of the first night’s stay. Still, we explore this question

in Appendix G. For a small subset of campgrounds, we are able to observe no-shows; in this

sample, we demonstrate that including or excluding no-show observations in the estimation

of cancellations P(Cijt = 0|Rijt = 1) does not change the estimates for the smoke or travel

cost coefficients. For a discussion of this issue, see Appendix G.

We also explore alternative distance thresholds for the sample restriction. In the main

results, we limit attention to reservations made within 650 km of one-way driving distance,

or approximately 400 miles. Figure 1 shows that this distance restriction includes more than

85 percent of all reservations. Appendix H reports how estimates vary with this threshold.

Increasing the distance threshold attenuates the parameter estimate for travel cost, which is

an input to welfare calculation. This may be due to the inclusion of visitors traveling from

greater distances, some of whom were on multipurpose trips and were therefore less likely

to cancel. As a result, the estimated welfare damages increase as the distance threshold is

relaxed. For more information, see Appendix H.

In addition, we vary the threshold value for τ in Figure 3. The main estimation con-

siders cancellation decisions within τ = 7 days of arrival, but Appendix I reports results

for alternative thresholds of 3, 5, and 9 days. As in the main estimation, the variable of

interest is a binary variable equal to 1 for a smoke-affected day within τ days of arrival.

Welfare estimates are larger for shorter bandwidths of τ . For τ = 3, we find estimates of
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$137 per person per trip; for τ = 9, we find estimates of $92 per person per trip. These

results point to a similar mechanism as in Section 4.2. During shorter time windows, the

occurrence of smoke communicates a greater likelihood of smoke on the actual arrival date.

An information effect is consistent with greater smoke avoidance closer to the arrival date.

Last, we assess which types of campgrounds drive the parameter estimates. Even with

a high number of fixed effects, visitors could respond differentially to disamenities at highly

valued destinations, such as Glacier National Park, versus small, primarily local US Forest

Service campgrounds. Appendix J reports heterogeneous results by campground popularity,

where popularity is defined by annual visitation. We find that visitors are less responsive to

both smoke and travel cost at the most popular destinations. Visitors may be more tolerant

of environmental disamenities at highly valued destinations. Across most specifications,

welfare damages are highest for destinations in the middle quartiles of popularity.

5 Total welfare losses

In the preceding sections, we estimated per trip damages of wildfire smoke. We now turn to

an appraisal of the total annual welfare damages for recreation. We combine the camping

data from Recreation.gov with overall visitation data from federal and state agencies to

determine the total number of outdoor visits in the west that are affected by smoke each

year. As a back-of-the-envelope calculation, we multiply total smoke-affected visitation by

the empirical per trip welfare estimate to approximate the total annual welfare loss due to

smoke in the West. One limitation of this analysis is that the estimates are derived from

camping activity, which may not be representative of losses to other forms of recreation,

such as angling, swimming, or daytime visits. Still, this figure approximates the relative

magnitude of total annual smoke damages for recreation in the western United States.

We find that across federal and state lands, an average of 21.5 million outdoor recreation

visits per year are affected by wildfire smoke. Multiplying by a per trip damage of $107

per person, this result implies more than $2.3 billion of welfare losses each year. This back-

of-the-envelope estimate represents the lost welfare to inframarginal visitors and does not

include the value of lost trips.
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To arrive at this number, we use total visitation numbers from the National Park Ser-

vice,23 US Forest Service,24 Bureau of Land Management,25 US Army Corps of Engineers,26

and National Association of State Park Directors (Smith et al. 2019) for 2008–2017. These

data sources have varying levels of spatial and temporal granularity. For each data source,

we use the Recreation.gov data to determine, at the relevant spatial and temporal scale, the

proportion of total visits at each agency that were affected by smoke. For more information

on the estimation of smoke-affected visitation, see Appendix K.

Table 6 displays estimates of total visitation, smoke-affected visitation, and total welfare

losses by agency. One key point is the high overall level of outdoor recreation, with more than

511 million annual visits to state and federal lands in the western United States. In addition,

a high proportion of these visits are affected by smoke. We estimate that approximately 21.5

million visits per year are smoke affected, or 4.2 percent. When multiplied by the per-trip

estimate of $107, we find total annual welfare losses of approximately $2.3 billion. Nearly

half of these damages occur at state parks, which see larger visitation compared to federal

agencies. Of any agency, the US Army Corps of Engineers saw the highest proportion of its

visitors affected by smoke. This is likely because much of that agency’s visitation (nearly

40 percent) occurs at lakes and reservoirs in the Pacific Northwest, a region that has seen

particularly high wildfire smoke impacts relative to other regions (Burke et al. 2021; Gellman

et al. 2022; Miller et al. 2021).

Welfare losses vary by region. Some states saw high smoke damages due to high baseline

levels of visitation, and damages in other regions were driven by a high proportion of smoke-

affected visits. Panel B of Table 6 reports losses by state. For states such as California and

Colorado, damages are large due to high visitation. States such as Oregon and Washington

saw both relatively high visitation and a high share of smoke-impacted visits. At the other

end of the spectrum, states in the Southwest, such as Arizona, Nevada, and Utah, saw high

visitation but a low proportion of smoke-affected visits. In Northern Rocky Mountain states,

23National Park Service. Annual Summary Report. https://irma.nps.gov/STATS.
24US Forest Service. National Visitor Use Monitoring Program. https://www.fs.usda.gov/

about-agency/nvum.
25Bureau of Land Management. Public Land Statistics. https://www.blm.gov/about/data/

public-land-statistics.
26US Army Corps of Engineers. Value to the Nation. https://www.iwr.usace.army.mil/Missions/

Value-to-the-Nation.
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such as Idaho, Montana, and Wyoming, damages are driven by a high share of smoke-affected

days despite lower total visitation. Figure A11 in Appendix A maps the results to contrast

proportional versus total impacts. As a whole, these findings show the high cost of wildfire

smoke for outdoor recreation in the western United States.

Table 6: Smoke-Affected Recreation Visits and Welfare Losses for the Western United States,
2008–2017

Proportion
Total Smoke-affected visits Welfare

visits/year visits/year smoke- loss/year
(millions) (millions) affected (millions)

Panel A: Agency

National Park Service 102.6 2.3 0.023 $248.1
US Forest Service 108.0 4.8 0.044 $511.4
Bureau of Land Management 59.8 2.5 0.042 $267.3
US Army Corps of Engineers 46.4 2.4 0.051 $251.7
State Parks 194.5 9.6 0.049 $1,022.1

Total 511.4 21.5 0.042 $2,300.6

Panel B: State

Arizona 33.0 0.4 0.013 $46.3
California 162.7 6.1 0.037 $649.6
Colorado 55.3 2.1 0.037 $220.9
Idaho 19.6 1.3 0.065 $136.8
Montana 18.3 1.1 0.062 $121.8
New Mexico 13.7 0.6 0.041 $60.9
Nevada 20.2 0.3 0.014 $29.8
Oregon 69.9 4.4 0.062 $466.2
Utah 32.1 0.8 0.025 $84.8
Washington 64.8 3.3 0.051 $351.9
Wyoming 21.9 1.2 0.056 $131.6

Total 511.4 21.5 0.042 $2,300.6

Note: Welfare losses computed by multiplying $107 per trip by smoke-affected visits.
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6 Conclusion

This study provides the first revealed preference welfare estimates of the damage of wild-

fire smoke for outdoor recreation. Using high-frequency data on campground reservations,

wildfire, smoke, and air pollution, we study avoidance behavior at federally managed lands

in the western United States. We estimate that wildfire smoke causes welfare losses of $107

per person per trip. These damages increase at an increasing rate when campgrounds are

affected by consecutive days of smoke and are attenuated when smoke-affected campgrounds

are far from active wildfires. Combining these results with federal and state data on total

visitation, we estimate that 21.5 million outdoor recreation visits per year are affected by

smoke, with associated welfare losses of $2.3 billion.

The paper provides several contributions to the literature. First, we use novel methods

and data. We value a temporary environmental bad, wildfire smoke, in a context where vis-

itors face changing sets of information. We develop a two-stage decision structure that links

preferences with a control function. This model draws on work from economists concerned

with sample selection in nonlinear models (Greene 2012; Terza 2009) and researchers con-

fronting sample selection in recreation settings (Cameron and DeShazo 2013; Cameron and

Kolstoe 2022; Kolstoe and Cameron 2017; Lewis et al. 2019). The framework we develop

could be used in other studies facing sample selection or sequential choices. Furthermore, our

use of administrative data complements recent literature using large or innovative datasets

to study recreation across multistate regions (Cameron and Kolstoe 2022; Dundas and von

Haefen 2020; English et al. 2018; Parthum and Christensen 2022).

We also add to the literature on the costs of wildfire smoke. To contextualize the results

of this study, we compare to several other studies on the costs of wildfire smoke. Most

of these studies used survey methods or health care costs or valued changes in mortality

using VSL. Richardson et al. (2012) report results from a survey following a large wildfire

in Los Angeles County. They asked respondents about avoidance behavior during this fire

(expenditures on air purifiers) and health outcomes and risk perceptions. They derive WTP

to avert one wildfire-induced symptom day of $84 in 2009 dollars. We estimate WTP to

avoid an exposure day rather than a symptom day. Taking the empirical estimate of $107
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per trip, this translates to approximately $38 per day based on an average trip of 2.84 days.

We can also compare total welfare results to the literature. We estimate welfare losses of

approximately $2.3 billion per year for recreation in the western United States. Miller et al.

(2021) combined a VSL with estimates of mortality among elderly Medicare recipients due to

wildfire smoke. They found $6–170 billion in annual damages, in 2021 dollars. These results

mainly vary due to assumptions on remaining years of life, as their sample is comprised

largely of elderly individuals. When assuming that those who die from wildfire smoke would

have lived an additional 3.5 years, they arrive at a lower bound of $6 billion. Borgschulte

et al. (2022) found annual lost labor earnings of $125 billion per year, in 2018 dollars, due

to wildfire smoke. Several other studies have found costs of wildfire smoke for test scores,

crime, and hospital visits (Burkhardt et al. 2019; Cullen 2020; Wen and Burke 2022).

Estimating these costs can inform public policy. The federal government spends an

average of $2.8 billion per year on fire suppression, and the State of California spends $900

million per year.27,28 Wildfires destroy thousands of structures per year, which has cost tens

of billions of dollars in recent years (Baylis and Boomhower 2022, 2023; Buechi et al. 2021).

Both states and the federal government have pledged to increase fuel treatment projects to

mitigate the risk of fire ignition and spread. California has jointly declared a goal with the

US Forest Service to treat more than 1 million acres of hazardous vegetation per year29 and

proposed to spend $1.2 billion across fiscal years 2022–23 and 2023–24 for fire mitigation

activities, such as vegetation management and home hardening.30 Understanding the cost

of wildfires is crucial to assess the benefit of these public policies. Our study contributes to

a growing understanding of the costs of wildfire smoke.

27National Interagency Fire Center. Suppression Costs. https://www.nifc.gov/fire-information/

statistics/suppression-costs.
28California Department of Forestry and Fire Protection. Suppression Costs. https://www.fire.ca.

gov/stats-events.
29Agreement for shared stewardship of California’s forest and rangelands between the State of California

and the USDA Forest Service, Pacific Southwest Region. https://www.gov.ca.gov/wp-content/uploads/
2020/08/8.12.20-CA-Shared-Stewardship-MOU.pdf.

30California Legislative Analyst’s Office. The 2022–23 Budget Wildfire and Forest Resilience Package.
https://lao.ca.gov/Publications/Report/4495.
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Appendix A: Additional figures

Figure A1: Recreation.gov Web Interface

Figure A2: Automobile Route from Santa Barbara, California to Yosemite National Park

37



Figure A3: NOAA Smoke Plumes and PM2.5.
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Figure A5: Fire Detection Points and Fire Perimeters
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Figure A6: Map of Campgrounds in Dataset
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Table A1: Most Visited Federally Managed Campgrounds

Annual average
Campground Recreation area State Agency campers

Upper Pines Yosemite NP CA NPS 99,820
Mather Grand Canyon NP AZ NPS 59,196

Watchman Zion NP UT NPS 49,389
Serrano Big Bear, San Bernardino NF CA USFS 46,610
Pinecrest Summit RD, Stanislaus NF CA USFS 36,576
Fallen Leaf Lake Tahoe Basin CA USFS 32,966
Lodgepole Sequoia And Kings Canyon NP CA NPS 30,634
North Pines Yosemite NP CA NPS 26,883
Moraine Park Rocky Mountain NP CO NPS 25,884
Lower Pines Yosemite NP CA NPS 25,644
Wawona Yosemite NP CA NPS 25,407

Hodgdon Meadow Yosemite NP CA NPS 24,746
Pinnacles Pinnacles NP CA NPS 24,210
Crane Flat Yosemite NP CA NPS 23,844
Indian Cove Joshua Tree NP CA NPS 23,376
Dogwood Arrow Head, San Bernardino NF CA USFS 21,540
Acorn New Hogan Lake CA USACE 21,164

Black Rock Joshua Tree NP CA NPS 19,888
Kalaloch Olympic NP WA NPS 18,105

Dinkey Creek High Sierra RD, Sierra NF CA USFS 16,294
Logger Truckee RD, Tahoe NF CA USFS 16,253

Diamond Lake Diamond Lake RD, Umpqua NF OR USFS 15,683
Kyen Lake Mendocino CA USACE 15,015

Dorst Creek Sequoia And Kings Canyon NP CA NPS 14,435
North Rim Grand Canyon NP AZ NPS 13,898

Ohanapecosh Mount Rainier NP WA NPS 13,889
Devils Garden Arches NP UT NPS 13,138

Oh Ridge Mono Lake RD, Inyo NF CA USFS 13,063
Fish Creek Glacier NP MT NPS 12,434

Manzanita Lake Lassen Volcanic NP CA NPS 12,379
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Figure A7: Campground Occupancy Rates Following a Bimodal Distribution Both on the
Date of Arrival and One Week in Advance
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Figure A8: Fitted P(Rijt = 1) for Reservations Made Earlier Than One Week from Model
(4)
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Figure A9: Fitted ε̃ijt for Reservations Made Earlier Than One Week from Model (4)
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Figure A10: Relationship Between Control Function ε̃ijt and Travel Cost Using Model (4)
of Table 4 Showing Correlation Between Preferences and Travel Cost in the Selected Sample
of Reservers
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Table A2: Regression of a Binary Variable Equal to 1 if a Campground Is Smoke Affected
on a Given Day, as a Function of the Number of Smoke Days in the Week Leading Up to It

1{Campground is smoke-affected}

Intercept 0.0000
(0.0001)

1{Smoke days in week of arrival = 1} 0.2013**
(0.0005)

1{Smoke days in week of arrival = 2} 0.3009**
(0.0008)

1{Smoke days in week of arrival = 3} 0.3798**
(0.0010)

1{Smoke days in week of arrival = 4} 0.4850**
(0.0012)

1{Smoke days in week of arrival = 5} 0.6108**
(0.0013)

1{Smoke days in week of arrival = 6} 0.7390**
(0.0016)

1{Smoke days in week of arrival = 7} 1.0000**
(0.0018)

N 1,528,470

Notes: * p < 0.05, ** p < 0.01.

Figure A11: Total Estimated Welfare Losses and Proportion of Visits Affected by Smoke
per Year
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Table A3: P(Cijt = 0|Rijt = 1), Heterogeneity by Smoke Days in Week Before Arrival

(1) (2) (3) (4)

Travel cost (dollars) -0.0025** -0.0024** -0.0024** -0.0024**
(0.0003) (0.0003) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -10.5524** -11.6117** -11.5449** -7.4215**
(0.9020) (2.3964) (2.4152) (0.7843)

High temp. (degrees C) 0.0202** 0.0289** 0.0289** 0.0302**
(0.0044) (0.0023) (0.0023) (0.0021)

Low temp. (degrees C) -0.0031 -0.0183** -0.0189** -0.0226**
(0.0057) (0.0025) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0043** -0.0060** -0.0061** -0.0057**
(0.0011) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0027 -0.0342** -0.0352** -0.0368**
(0.0255) (0.0124) (0.0124) (0.0126)

Smoke days = 1 0.0158 -0.0718** -0.0575* -0.0776**
(0.0268) (0.0247) (0.0246) (0.0201)

Smoke days = 2 -0.1521** -0.2164** -0.1975** -0.2217**
(0.0436) (0.0427) (0.0416) (0.0339)

Smoke days = 3 -0.2257** -0.3050** -0.2862** -0.3182**
(0.0410) (0.0441) (0.0437) (0.0357)

Smoke days = 4 -0.4418** -0.4792** -0.4506** -0.5066**
(0.0472) (0.0511) (0.0502) (0.0447)

Smoke days = 5 -0.5737** -0.6032** -0.5779** -0.6583**
(0.0448) (0.0560) (0.0551) (0.0488)

Smoke days = 6 -0.7121** -0.7612** -0.7444** -0.8348**
(0.0603) (0.0669) (0.0669) (0.0637)

Smoke days = 7 -1.0022** -1.0065** -0.9868** -1.0481**
(0.0660) (0.0939) (0.0922) (0.0908)

WTP: 1 smoke day -6.31 30.11* 23.87* 31.96**
(10.45) (11.92) (11.38) (9.66)

WTP: 2 smoke days 60.79** 90.8** 82.03** 91.32**
(21.15) (24.32) (22.91) (20.36)

WTP: 3 smoke days 90.26** 127.98** 118.9** 131.09**
(22.07) (27.66) (26.04) (23.07)

WTP: 4 smoke days 176.63** 201.07** 187.15** 208.68**
(31.73) (33.26) (31.01) (29.87)

WTP: 5 smoke days 229.38** 253.09** 240.06** 271.19**
(38.74) (39.86) (36.75) (34.92)

WTP: 6 smoke days 284.7** 319.4** 309.19** 343.87**
(46.09) (50.3) (47.28) (47.41)

WTP: 7 smoke days 400.7** 422.33** 409.86** 431.74**
(59.86) (73.41) (68.21) (68.64)

N 2,723,034 2,691,655 2,691,655 2,688,739
Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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Appendix B: Reservations close to arrival

This paper focuses on the cancellation decisions of visitors who reserve ahead of time, before

smoke conditions are known, and decide whether to cancel close to the arrival date, after site

conditions are realized. Figure 3 illustrates the timing of decisions in the main analysis. We

focus on this structure for several reasons. First, most reservations are made ahead of time.

Figure 1 shows that, although a plurality of reservations are made within a week of arrival,

the majority are made earlier. Second, by the time smoke conditions are known, many

campgrounds are either fully booked or completely empty, which limits the variation needed

to identify changes in campground activity due to wildfire smoke. Figure A7 depicts this

bimodal distribution. Congested and empty campgrounds both prevent proper measurement

of changes in recreation activity due to smoke. When campgrounds are completely booked,

logistic regression would underestimate the latent demand for recreation on nonsmoke days

because occupancy meets a binding constraint; this analysis would lead to an underestimate

of the coefficient on smoke. When campgrounds are empty on nonsmoke days, there is

similarly no identifying variation. We focus on cancellations because, once a visitor holds a

reservation, they may always cancel it and do not face constraints.31

Still, we could have measured decisions for visitors who make new reservations close to

the arrival date, when they are likely aware of smoke conditions. In this section, we report

results for a zonal travel cost model of new reservations close to the arrival date. We restrict

the data to reservations made within a week of arrival during the months of May–September

and over the years 2010–2017. We also limit attention to trips coming from within 650 km

(400 miles), as described in Section 2.6. Last, we exclude new reservations that were also

cancelled in the same week. These restrictions result in 693,501 same-week reservations.

We aggregate these reservations for a zonal estimation as described in Section 3.1 but for

same-week rather than early reservations.

Figure B1 shows how reservation rates vary by travel cost and wildfire smoke conditions.

Reservation rates are much higher at lower levels of travel cost. Before controlling for other

31For a discussion of site substitution, refer to Appendix C. Users tend not to cancel and rebook for the
same choice occasion. In addition, smoke conditions are spatially and temporally correlated among choice
sets, meaning variation is low in differences in smoke-related disutility among choice alternatives.
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observable and unobservable factors, Figure B1 shows that raw reservation rates are actually

higher on days with smoke, likely because wildfire season overlaps with popular camping

times, such as Independence Day and Labor Day. Therefore, fixed effects for location and

seasonality are likely to be important.

Figure B1: Reservation Rate Within One Week of Arrival
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Table B1 reports results for estimation of the reservation likelihood within one week,

P(Rijt = 1), using the zonal maximum likelihood function of Equation 6. In all estima-

tions, we use frequency weights for the observations because a single row of data might

represent, for example, 20 reservers or 2.3 million nonreservers. In Column 1, we display

results without controlling for campground or seasonal fixed effects. As suggested by Fig-

ure B1, users are unconditionally more likely to reserve for smoke-affected dates, yielding an

unexpectedly positive coefficient on smoke. Columns 2–4 add fixed effects, which yield the

expected sign for the smoke coefficient. The results in Columns 2–4 indicate a WTP to avoid

smoke of $1.45–1.65 per person per trip. Given previous discussion of congested and empty

campgrounds, we believe these estimates are less plausible than our main set of results.
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Table B1: P(Rijt = 1) for Reservations Within One Week

(1) (2) (3) (4)

Smoke in week of arrival 0.1382** -0.0434** -0.0406** -0.0460**
(0.0021) (0.0125) (0.0104) (0.0091)

Travel cost (dollars) -0.0241** -0.0279** -0.0279** -0.0279**
(0.0000) (0.0017) (0.0017) (0.0017)

Inv. distance to wildfire (km−1) -0.6732** -2.0485** -2.0798** -1.9822**
(0.0310) (0.3046) (0.3029) (0.2809)

High temp. (degrees C) 0.0602** 0.0074** 0.0075** 0.0079**
(0.0002) (0.0012) (0.0011) (0.0010)

Low temp. (degrees C) -0.0205** -0.0044** -0.0039** -0.0047**
(0.0002) (0.0016) (0.0015) (0.0014)

Precip. in week of arrival (mm) -0.0035** -0.0028** -0.0027** -0.0028**
(0.0001) (0.0004) (0.0004) (0.0003)

N 13,792,677 10,913,738 10,913,738 10,542,160
WTP -5.73** 1.55** 1.45** 1.65**

(0.09) (0.45) (0.37) (0.32)

Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

Appendix C: Site substitution

In the main analysis, both the trip-level cancellation decision and the zonal travel cost

model imply a binary choice for the representative visitor. Although we could have used a

multinomial logit to model site substitution, we discuss in Section 3.1 the practical limitations

of that approach and the advantages afforded by a zonal travel cost model. Moreover, the

zonal reservation estimation and binary cancellation decision should properly identify the

parameters of interest: the marginal disutility of smoke and of expenditure. In this section,

we first show that a binary cancellation decision is a realistic representation of the choice
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that users face. We also discuss the choice to model early reservations in a zonal setting.

We begin by discussing the binary cancellation decision. Substitution after a cancellation

is uncommon. The 2,723,940 trips in the estimating dataset have 268,750 cancellations, im-

plying a 9.87 percent raw cancellation rate. Approximately 10.3 percent of users “rebooked,”

meaning they made a new reservation for a date within a year of their original scheduled

arrival. However, rebookers rarely substitute for the same choice occasion. Only 11 percent

of rebookings substituted to a different campground on the same week of arrival; multiplying

by 10.3 percent, this implies that only 1.1 percent of all cancellations did so. Intertemporal

substitution is more common: 57 percent of all rebookings were for the same or a different

campground at a later week. Multiplying by 10.3 percent, this means that 5.8 percent of all

cancellations intertemporally substituted.

Because this analysis is concerned with wildfire smoke, we note the smoke status of

rebooked visits: 0.9 and 1 percent were smoke affected and rebooked for a different week

or the same week, respectively. Multiplying by 10.3 percent, this means that 0.09 percent

and 0.1 percent of all cancellations could have ostensibly substituted due to wildfire smoke.

We view these substitutions as uncommon. Therefore, modeling cancellations as a binary

decision is a reasonable representation of visitors’ choice.

One additional reason not to model site substitution is that smoke conditions are spa-

tially and temporally correlated, which could wash out differences in smoke-related utility

between choice alternatives, variation that is needed to properly identify the smoke parame-

ter. Figures C1, C2, and C3 plot a visualization of this correlation for Colorado, Oregon, and

California, sorting campgrounds north to south on the vertical axis and plotting days of the

year during the summer months on the horizontal axis. Each tile represents a campground

day and is colored according to the smoke conditions on that day. These figures reveal that,

when one campground is smoke affected, nearby campgrounds also tend to be. Figure C4

also shows this relationship as a histogram for all campground days in the estimating dataset.
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Figure C1: Spatial and Temporal Correlation of Smoke in Colorado
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Figure C2: Spatial and Temporal Correlation of Smoke in Oregon
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Figure C3: Spatial and Temporal Correlation of Smoke in California
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Figure C4: For a Smoke-Affected Campground, Proportion of Campgrounds Within 350 km
Experiencing Smoke in the Same Week
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The goal of this study is to value the nonmarket damages of wildfire smoke. The parame-

ters of interest to estimate welfare damages are the marginal disutility of wildfire smoke and
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in expenditure. Both of these arise from the cancellation model, when site conditions become

known to individuals. As we discuss in Section 3.1, the main purpose for the reservation

estimation is to build the control function that accounts for preferences in the cancellation

estimation. These preferences are likely correlated with travel cost in the selected sample,

which we explore theoretically in Appendix D and show empirically in Figure A10. We are

less concerned with the estimation of smoke in the reservation decision because it occurs

before smoke conditions are known. In addition, the binned travel cost zones provide vari-

ation to estimate how travel cost affects the likelihood of reservation. Overall, because we

are less interested in site substitution for the reservation decision, we argue that the flexible

computational advantages afforded by the zonal estimation justify this trade-off. For more

discussion, see Section 3.1.

Appendix D: Numerical example of sample selection

correction

In Section 3.3, we propose a control function approach to account for unobserved prefer-

ences ε̃ijt that could bias estimation of P(Cijt = 0|Rijt = 1) if omitted. In this appendix, we

provide a numerical example to illustrate the source of this bias, its effect on estimation of

willingness to pay (WTP), and correction using a control function. We show that WTP is

only biased when preferences for the reservation decisions influence the cancellation decision

(i.e., given selection) and the counterfactual cancellation decision of nonreservers is unob-

served. Furthermore, the bias operates through correlation between preferences and travel

cost: among the selected sample of reservers, those with a high travel cost tend to have

had a high taste for the site. This relationship downward biases estimates of the travel cost

parameter in the cancellation decision, inflating WTP estimates. Finally, we demonstrate

bias correction using the control function for ε̃ijt given in Equation 10.

In this numerical example, we simulate the two-stage reservation and cancellation decision

using a Monte Carlo of 10,000 random draws. For every iteration, we generate N = 100, 000

users i, each with a spatial coordinate (x, y) ∈ [0, 1] × [0, 1], where x and y are distributed
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uniformly. In addition, we generate a single site j at a random coordinate (x, y) ∈ [0, 1] ×

[0, 1], where x and y are again distributed uniformly. User i’s travel cost cij is given by the

Euclidean distance from i to j.

Users who reserve far in advance maximize utility based on expected smoke conditions.

Define the utility from the reservation as UR
ij = αj+δcij+ϕE[sj]+εij, where αj is an intercept,

cij is the travel cost, sj is smoke conditions at the site, and εij is the individual’s preferences

from reservation. We will assert arbitrarily that αj = 1, δ = −0.8, and ϕ = −1.6. Therefore,

the true WTP is ϕ/δ = 2. Each user’s site-specific preference values of εi0 and εij are drawn

from a type I extreme value distribution. Based on the “time of visitation,” expected smoke

conditions E[sj] are drawn for each user from {0.1, 0.2, 0.4} with equal probability. Users

will choose to reserve Rij = 1 ⇐⇒ UR
ij ≥ UR

i0 .

For the cancellation decision, the user decides based on realized smoke conditions. Let

the utility from cancellation be UC
ij = αj + δcij + ϕsj + υij. Realized smoke sj is drawn

from {0, 1} with P(sj = 1) = 0.25 for each user to create variation based on the “time of

visitation.”

We consider two types of error structures υij in the cancellation decision. The first is an

independent error, υindij = 1
ρ
ηij, where ηij ∼ type I extreme value, which assumes that the

user’s preferences in the decision are completely unrelated to their choice to have reserved.

The second is a dependent error, υdepij = εij +
1
ρ
ηij, which allows preferences at the time of

reservation to affect the decision. We assume ηij ∼ type I extreme value and arbitrarily

set ρ = 0.7. Users will cancel Cij = 1 ⇐⇒ UC
ij ≤ UC

i0 . Because of the differing error

structures, we consider two decisions under both υindij and υdepij , which we denote as Cind
ij and

Cdep
ij , respectively.

The selection issue in the real recreation data arises because we can only observe the

cancellation decision for reservers. However, under the Monte Carlo simulation, we can also

examine the counterfactual decision of the nonreservers to see if they “would have” cancelled.

We show that, even with a dependent error υdepij , estimation of P(Cij = 0) on the full sample

(reservers and nonreservers) without observing εij will still recover the true WTP because

no selection effect exists. That is, the biased estimation of P(Cij = 0|Rij = 1) is because εij

and cij are correlated in the selected sample, not the full sample.
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Table D1: Example of Users’ Reservation and Cancellation Decisions

Rij Cind
ij Cdep

ij N

0 0 0 14,060
0 0 1 9,673
0 1 0 17
0 1 1 21,241
1 0 0 29,339
1 0 1 205
1 1 0 9,046
1 1 1 16,419

Table D1 shows an example of users’ decisions from one iteration of the Monte Carlo:

nonreservers were more likely to cancel with dependent errors, and reservers were less likely

to cancel with independent errors. This result is driven by their initial preferences about the

site, as reservers have a higher εij. Figure D1 illustrates this point by comparing the εij of

reservers to the total population.

Figure D1: Example Distribution of εij for Reservers and All Users
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Figure D2 illustrates the effects of selection by contrasting cancellation rates with and

without selection effects, illustrating several key points. First, the overall cancellation rate

is lower in the presence of selection, as indicated by the intercept of the fitted golden line.
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Users who made a reservation had a high initial preference for the site, so they are less likely

overall to cancel. Second, the average effect of smoke, which is the distance between the red

and blue points, is similar both with and without sample selection effects. Third, the effect

of travel cost, which is the slope of the golden fitted line, is attenuated when preferences at

the time of reservation affect the cancellation decision. This attenuation illustrates that the

selection effect likely operates through positive correlation between εij and travel cost.

We can further demonstrate this correlation by regressing distance on εij in the full

and selected samples. Table D2 shows an example using one draw from the Monte Carlo

simulation. Travel cost and distance are correlated for the selected sample but not all users.

Figure D2: Example Cancellation Rate to Illustrate the Effects of Selection
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Table D2: Example Regression of Distance on εij in the Full and Selected Samples

(1) (2)

εij -0.0001 0.0112**
(0.0006) (0.0008)

Intercept 0.5236** 0.4904**
(0.0008) (0.0014)

Observations 100,000 55,009
R2 0.0000005 0.004
Users All users Reservers

Note: ∗p<0.05; ∗∗p<0.01.

Next, we show that WTP estimates are only biased under a selected sample and when

preferences at the time of reservation affect the cancellation decision. We estimate a logit

regression for the reservation and cancellation decisions, varying whether we use the full

sample or selected sample of reservers and the dependent error υdepij or the independent error

υindij for the cancellation decision.

Table D3 shows an example from one iteration of the Monte Carlo simulation. In Column

1, we use the full sample for the reservation decision. In Columns 2 and 3, we estimate

the cancellation decision with both errors υindij and υdepij but with the full sample. These

regressions show that the selection effects would not cause biased estimation if the coun-

terfactual cancellation decision of the nonreservers were known. In Column 4, we estimate

the cancellation decision among only the selected sample but with an independent error υindij

(i.e., assuming no selection effects). Regression 4 demonstrates that sample selection is not

an issue if the user’s preferences at the time of reservation are unrelated to their cancella-

tion decision. Finally, Column 5 shows that WTP estimates are biased when the sample is

selected and reservation preferences affect the cancellation decision.

Table D3 uses only one draw from the full set of 10,000 random draws. In Table D4, we

show the same results over the full set. The logic holds: estimation of WTP is biased only

under a selected sample with selection effects.
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Table D3: Example Regressions of Reservation and Cancellation Decisions Under Various
Samples and Error Structures

(1) (2) (3) (4) (5)

Distance -0.7855** -0.6303** -0.4890** -0.6486** -0.2411**
(0.0269) (0.0274) (0.0270) (0.0370) (0.0398)

E[Smoke] -1.6406**
(0.0514)

Smoke -1.1265** -0.8691** -1.1116** -1.0040**
(0.0155) (0.0151) (0.0208) (0.0206)

Intercept 0.9991** 0.7395** 0.5698** 0.7513** 1.2415**
(0.0199) (0.0164) (0.0161) (0.0215) (0.0233)

N 100,000 100,000 100,000 55,009 55,009
Dep. var. Rij Cij Cij Cij Cij

Users All users All users All users Reservers Reservers

Error εij υindij υdepij υindij υdepij

WTP 2.09 1.79 1.78 1.71 4.16

Notes: True WTP = 2. * p < 0.05, ** p < 0.01.

Table D4: Monte Carlo 10,000 Simulated Regressions of Reservation and Cancellation De-
cisions

(1) (2) (3) (4) (5)

WTP 2.00** 2.01** 2.01** 2.01** 6.70
(0.10) (0.11) (0.14) (0.15) (8.52)

Dep. var. Rij Cij Cij Cij Cij

Users All users All users All users Reservers Reservers

Error εij υindij υdepij υindij υdepij

Notes: True WTP = 2. * p < 0.05, ** p < 0.01.

We next demonstrate the bias correction of the estimand ε̃ij derived in Equation 10. We

estimate the reservation decision, then use the fitted values of V̄ij to form ε̃ij. Table D5

shows an example from one draw of the 10,000 simulations. In this example, the smoke

coefficient is unaffected by the bias corrector. Instead, the value of the intercept is reduced

and the value of the distance coefficient is inflated. In this single random draw, the true
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WTP was not exactly recovered. However, over the full set of 10,000 simulations, including

ε̃ij results in unbiased estimation. Table D6 shows WTP results for the full set. Including

the ε̃ij estimator resulted in recovery of the true WTP. This result lends support to the use

of this bias corrector in the empirical dataset.

Table D5: Example Regression of Cancellation Decision for Reservers Using Bias Correction

(1) (2)

Intercept 1.2415** 0.6418**
(0.0233) (0.0749)

Smoke -1.0040** -1.0057**
(0.0206) (0.0206)

Distance -0.2411** -0.5480**
(0.0398) (0.0540)

ε̃ijt -0.6126**
(0.0729)

N 55,009 55,009
WTP 4.16 1.84
2-step estimator None ε̃ijt

Notes: True WTP = 2. * p < 0.05, ** p < 0.01.

Table D6: Monte Carlo 10,000 Simulated Regressions Showing Bias Correction

(1) (2)

WTP 6.70 2.00**
(8.52) (0.25)

2-step estim. None ε̃ij

Notes: True WTP = 2. * p < 0.05, ** p < 0.01.

This exercise yields several key assumptions. First, the data-generating process asserts

that users react the same way to expected and realized smoke. That is, the coefficient for

expected and realized smoke is the same. This assumption may not hold for real users; it is

reasonable to believe that decision makers may respond differently to expected conditions.
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Still, the purpose of ε̃ij is to account for selection from the first stage; it should therefore

serve as an appropriate control function, regardless of whether the coefficients are identical

between stages.

The second key assumption is that the decision maker selects from a single choice alterna-

tive. This setup matches our conceptual framework in Section 3, where we assumed a binary

site choice. This structure owes to the use of a zonal travel cost model for the first-stage

reservation estimation. For an extended treatment of this matter, see Appendix C.

Appendix E: Bootstrapped standard errors for P(Cijt =

0|Rijt = 1)

In Section 4, we used a two-stage sample selection correction to estimate P(Cijt = 0|Rijt = 1).

Wooldridge (2015) recommends that researchers bootstrap standard errors when estimating

two-stage control functions. Because we cluster standard errors at the campground level,

our bootstrap follows the process outlined by Cameron and Miller (2015) in a methods guide

for clustered standard errors: for B bootstraps and G clusters, (1) sample with replacement

G times from the original sample of clusters, and (2) compute parameter estimates. The

estimating dataset contains G = 999 clusters. The resampling occurs over entire clusters; in

some bootstraps, some clusters will not be represented, whereas some clusters will have all

of their observations appear multiple times in the estimating dataset. Cameron and Miller

(2015) note that B = 400 should be “more than adequate” in most settings.

In this section, we test that the bootstrapped coefficients follow a normal distribution,

assessing whether B = 400 is adequate. Table E1 reports W statistics from Shapiro-Wilk

tests of normality for the smoke and travel cost coefficients from the main estimation of

Table 4. We fail to reject the null hypothesis that the bootstrapped smoke and travel cost

coefficients follow a normal distribution. These tests imply that 400 bootstraps are adequate

for the analysis. Figures E1 and E2 plot the bootstrapped coefficients visually.
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Table E1: W Statistics from Shapiro-Wilk Test of Normality for Bootstrapped Coefficients
of P(Cijt = 0|Rijt = 1) with Sample Selection Correction (parentheses indicate p values; the
null hypothesis is that the coefficients are normally distributed)

(1) (2) (3) (4)

Smoke in week of arrival 0.996 0.998 0.998 0.994
(0.450) (0.979) (0.852) (0.084)

Travel cost (dollars) 0.990 0.996 0.995 0.995
(0.006) (0.343) (0.291) (0.255)

Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes
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Figure E1: Distribution of Estimated Smoke Coefficient fromModels (1)–(4) in Bootstrapped
Estimation of P(Cijt = 0|Rijt = 1) with Sample Selection Correction (red line indicates mean)
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Figure E2: Distribution of Estimated Travel Cost Coefficient from Models (1)–(4) in Boot-
strapped Estimation of P(Cijt = 0|Rijt = 1) with Sample Selection Correction (red line
indicates mean)
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Appendix F: The role of active wildfires

The literature has found that outdoor recreation activity is less responsive to wildfire smoke

when an active wildfire is nearby (Cai 2021). In this section, we investigate the role of

nearby active wildfires for the parameter estimates. The main estimates of the paper control

for inverse distance to active wildfires, but for this analysis, we additionally remove any

observation with an active fire close to the campground.

We consider a campground as near to fire on day t if an active wildfire is within 20 km

(12 miles), a threshold we have used in previous work (Gellman et al. 2022). Table E2
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reports the number of reservations affected by either smoke or fire conditions. When a fire

is nearby, smoke- and non-smoke-affected reservations are nearly equal. However, due to the

large distances that smoke travels, most smoke-affected reservations are not for campgrounds

near an actively burning wildfire.

Table E2: Reservations with Smoke or Fire Conditions in the Estimating Dataset

Smoke in week Fire within Number of Percent of
of arrival 20 km reservations sample (%)

0 0 2,356,407 86.5
1 0 322,114 11.8
0 1 24,199 0.9
1 1 21,220 0.8

Table E3 reports results for the cancellation estimation P(Cijt = 0|Rijt = 1) when remov-

ing observations with nearby active wildfire. We find welfare damages of $85 per person per

trip due to smoke. By comparison, in the main specification, we estimated $107 per person

per trip. The omission of fire days thus reduced estimated welfare damages by approximately

20 percent. These results are broadly consistent with Cai (2021), which found that outdoor

recreation was less responsive to smoke coming from distant wildfires.
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Table E3: P(Cijt = 0|Rijt = 1), Removing Days with Wildfire Within 20 km

(1) (2) (3) (4)

Smoke in week of arrival -0.1678** -0.2323** -0.2119** -0.2116**
(0.0224) (0.0195) (0.0173) (0.0177)

Travel cost (dollars) -0.0028** -0.0024** -0.0025** -0.0025**
(0.0003) (0.0003) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -9.4566** -7.7163** -7.2826** -6.5691**
(1.1591) (1.0196) (1.0794) (0.8965)

High temp. (degrees C) 0.0195** 0.0275** 0.0277** 0.0298**
(0.0043) (0.0021) (0.0021) (0.0021)

Low temp. (degrees C) -0.0029 -0.0202** -0.0208** -0.0249**
(0.0056) (0.0025) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0043** -0.0060** -0.0062** -0.0059**
(0.0011) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0129 -0.0348** -0.0357** -0.0377**
(0.0261) (0.0121) (0.0121) (0.0123)

N 2,677,628 2,645,592 2,645,592 2,642,695
WTP 60.97** 95.08** 85.96** 84.66**

(12.4) (13.13) (12.03) (12)

Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.

Appendix G: Testing the influence of no-shows in can-

cellations

One may be concerned that some recreationists do not formally cancel their reservation when

they decide not to complete a trip. Unreported no-shows threaten the identification of any

willingness to pay (WTP) that is based on cancellations, as it could underestimate them.

Although most of the campgrounds in the Recreation.gov dataset do not report check-ins or

no-shows, a subset do.

64



In this section, we compare estimates at these select campgrounds with and without

including no-shows. We demonstrate that although no-shows are not infrequent at these

campgrounds, omitting them does not influence measures of responses to smoke and travel

cost. This analysis should mitigate some concern that we understate avoidance behavior.

Just 36 out of 999 campgrounds (3.6 percent) report no-shows, but they represent a large

proportion of the reservations used in the cancellation estimation. Of the reservations made

more than a week ahead of time, 2,188,444 were at non-no-show facilities (80.3 percent), and

535,496 were at facilities that report no-shows (19.7 percent).

To gauge the importance of no-shows in the cancellation estimation, Figure G1 and Ta-

ble G1 report the share of all cancellations that are no-shows at each campground. Although

most of the overall dataset comprises US Forest Service campgrounds, Table G1 shows that

many campgrounds reporting no-shows are managed by the National Park Service and US

Army Corps of Engineers. For most of these, no-shows represent less than 15 percent of all

cancellations, although they are nearly a third at some campgrounds.

Figure G1: No-Shows as a Proportion of All Cancellations Among Campgrounds Reporting
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Table G1: Campgrounds Reporting No-Shows

No-show %
Campground Recreation area State Agency of cancellations

Aspenglen Campground Rocky Mountain National Park CO NPS 33.69
Glacier Basin Campground Rocky Mountain National Park CO NPS 32.8
Moraine Park Campground Rocky Mountain National Park CO NPS 32.51
Watchman Campground Zion National Park UT NPS 32.36
Mather Campground Grand Canyon National Park AZ NPS 27.59

Schwarz Park Dorena Lake OR USACE 24.62
Buckhorn Black Butte Lake CA USACE 23.37

Springy Point Albeni Falls Dam ID USACE 20.44
Hood Park McNary Lock And Dam WA USACE 18.51

Hodgdon Meadow Yosemite National Park CA NPS 18.49
Fishhook Park Ice Harbor Lock WA USACE 15.09
Dinkey Creek High Sierra RD CA USFS 14.86
Meeks Bay Lake Tahoe Basin CA USFS 14.03
Serrano Big Bear CA USFS 14.02

Crane Flat Yosemite National Park CA NPS 13.89
Riley Creek Albeni Falls Dam ID USACE 13.83
Dogwood Arrow Head CA USFS 13.24
Wawona Yosemite National Park CA NPS 13.2

Charbonneau Pk Ice Harbor Lock WA USACE 12.74
Pine Meadows Campground Cottage Grove Lake OR USACE 12.65
North Rim Campground Grand Canyon National Park AZ NPS 12.47

Kyen Campground Lake Mendocino CA USACE 10.83
Nevada Beach Campground Lake Tahoe Basin CA USFS 10.81
William Kent Campground Lake Tahoe Basin CA USFS 10.1

Lepage Park John Day Lock OR USACE 9.74
Fish Creek Campground Glacier National Park MT NPS 8.5

Rancheria High Sierra RD CA USFS 7.61
Oh Ridge Mono Lake RD CA USFS 7.19
Deer Creek High Sierra RD CA USFS 7.1

Diamond Lake Diamond Lake RD OR USFS 6.01
Downstream Fort Peck Project MT USACE 5.68
Pinecrest Summit RD CA USFS 5.47

Fallen Leaf Campground Lake Tahoe Basin CA USFS 4.56
Acorn Campground New Hogan Lake CA USACE 4.46

Lodgepole Campground Sequoia And Kings Canyon National Park CA NPS 2.5
Dorst Creek Campground Sequoia And Kings Canyon National Park CA NPS 2.33

We use this subset to demonstrate that unreported no-shows likely do not matter in the

full sample. Table G2 tests whether these campgrounds are systematically different than the

full sample: they tend to have higher cancellation rates under both smoke and nonsmoke

conditions.

However, the estimates in Table G3 should alleviate concerns that no-shows are influential
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in cancellation estimates. We test four models with the same sets of fixed effects but vary

the estimating sample. In Column 1, we include all campgrounds and estimate P(Cijt =

0|Rijt = 1). Column 2 removes no-shows from the dataset, finding that WTP is unchanged.

In Column 3, we allow smoke and travel cost to respond differentially for no-show and non-

no-show campgrounds but include no-shows in the dataset. This model shows that no-show

and non-no-show campgrounds have different overall measures of WTP. Finally, Column 4

removes no-shows from the dataset. Comparing the WTP of no-show campgrounds with

and without the inclusion of no-shows, WTP is virtually unchanged. This analysis should

alleviate concerns that no-shows influence the estimate of WTP in the full sample.

Table G2: Cancellation Rate Mean by Campground Type and Smoke

All campgrounds Non-no-show campgrounds No-show campgrounds t-statistic

Baseline 0.09 0.09 0.13 (9.44)

No. of res. 2,380,606 1,898,955 481,651

Smoke 0.13 0.12 0.19 (2.02)

No. of res. 343,334 289,489 53,845

t-statistic (13.41) (13.19) (3.06)

Notes: The righthand column gives the t-statistic for the difference in mean cancellation rates by
campground type in either smoke or nonsmoke conditions. The bottom row gives the t-statistic
for the difference in mean cancellation rate for smoke and nonsmoke days among the different
campground types.
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Table G3: P(Cijt = 0|Rijt = 1), Testing Effect of No-Shows on Cancellation

(1) (2) (3) (4)

Smoke in week of arrival -0.2613** -0.2659**
(0.0215) (0.0215)

Smoke x 1(Non-no-show campground) -0.2608** -0.2605**
(0.0188) (0.0188)

Smoke x 1(No-show campground) -0.2628** -0.2846**
(0.0689) (0.0736)

Travel cost (dollars) -0.0024** -0.0025**
(0.0003) (0.0004)

Travel cost x 1(Non-no-show campground) -0.0025** -0.0025**
(0.0004) (0.0004)

Travel cost x 1(No-show campground) -0.0023** -0.0024**
(0.0003) (0.0003)

Inv. distance to wildfire (km−1) -7.8194** -7.9970** -7.8180** -7.9907**
(0.8239) (0.8659) (0.8223) (0.8631)

High temp. (degrees C) 0.0306** 0.0308** 0.0306** 0.0308**
(0.0022) (0.0022) (0.0022) (0.0022)

Low temp. (degrees C) -0.0252** -0.0254** -0.0252** -0.0254**
(0.0025) (0.0025) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0057** -0.0058** -0.0057** -0.0058**
(0.0009) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0370** -0.0370** -0.0376** -0.0373**
(0.0126) (0.0131) (0.0134) (0.0137)

WTP 107.95** 107.92**
(17.14) (17.48)

WTP, non-no-show campgrounds 103.82** 103.9**
(17.39) (17.75)

WTP, no-show campgrounds 116.66** 119.75**
(32.1) (33.5)

No-shows included? Yes No Yes No
N 2,688,739 2,677,763 2,688,739 2,677,763
Day-of-week FE Yes Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes Yes
Campground x year FE Yes Yes Yes Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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Appendix H: Alternative distance thresholds for sample

restriction

The main estimates of this paper restrict the estimating sample to reservations from origins

within driving distance of a site, which we define as 650 km of one-way driving distance,

or approximately 400 miles. Figure 1 shows that this threshold admits approximately 85

percent of the total reservations into the estimation. In this section, we show results from the

main estimation using alternative distance thresholds of 350 km (approximately 217 miles)

and 950 km (approximately 590 miles).

Figure H1 illustrates how willingness to pay (WTP) estimates increase as the distance

threshold is relaxed. Using a restrictive threshold of 350 km, WTP is estimated to be $79

per person per trip; with a wider threshold of 950 km, WTP is estimated to be $140 per

person per trip. Tables H1 and H2 show full results for these estimations, which should be

compared to the main estimates in Table 4.

WTP is calculated as the ratio of marginal disutility in smoke to that in expenditure (the

smoke coefficient divided by the travel cost coefficient). The choice of distance threshold

does not alter the estimated smoke coefficient. Instead, the increasing WTP estimates are

driven by a decline in the magnitude of the travel cost coefficient as the distance threshold is

relaxed. The travel cost coefficient is estimated at -0.0034, -0.0025, and -0.0019 for thresholds

of 350 km, 650 km, and 950 km, respectively. In other words, increasing the pool of potential

reservers decreases the estimated response to travel cost. This phenomenon could result from

including visitors at greater distances who chose not to cancel their reservations.

An additional difference across estimations is the magnitude of the coefficient for the ε̃ijt

preference parameter, which is estimated at -0.0240, -0.0385, and -0.0390 for 350 km, 650

km, and 950 km, respectively. The magnitude is likely smaller at lower thresholds due to

the correlation of preferences with travel cost; removing reservations from larger distances

eliminates some visitors with both high travel costs and high preferences. Figure H2 shows

that the fitted parameter ε̃ijt correlates with travel cost in both the 350 km and 950 km

samples.
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Figure H1: Summary of Willingness to Pay (WTP) Measures Using Alternative Distance
Thresholds for Sample Restriction of 350 km (217 miles) and 950 km (590 miles)
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Table H1: P(Cijt = 0|Rijt = 1) Within One Week, Restricting Sample Distance to Within
350 km (217 miles) of Site

(1) (2) (3) (4)

Smoke in week of arrival -0.2227** -0.2641** -0.2329** -0.2651**
(0.0262) (0.0342) (0.0324) (0.0241)

Travel cost (dollars) -0.0039** -0.0033** -0.0033** -0.0034**
(0.0006) (0.0005) (0.0005) (0.0005)

Inv. distance to wildfire (km−1) -12.3006** -14.1542** -14.0303** -8.9377**
(1.0509) (3.2997) (3.3356) (0.8670)

High temp. (degrees C) 0.0210** 0.0323** 0.0325** 0.0331**
(0.0043) (0.0027) (0.0027) (0.0025)

Low temp. (degrees C) -0.0007 -0.0209** -0.0217** -0.0248**
(0.0054) (0.0029) (0.0029) (0.0028)

Precip. in week of arrival (mm) -0.0045** -0.0065** -0.0066** -0.0061**
(0.0011) (0.0010) (0.0010) (0.0010)

ε̃ijt -0.0139 -0.0222 -0.0230 -0.0240
(0.0344) (0.0160) (0.0162) (0.0165)

N 2,085,985 2,047,894 2,047,894 2,044,062
WTP 57.42** 80.09** 69.86** 78.74**

(11.65) (17.61) (15.7) (14.02)

Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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Table H2: P(Cijt = 0|Rijt = 1) Within One Week, Restricting Sample Distance to Within
950 km (590 miles) of Site

(1) (2) (3) (4)

Smoke in week of arrival -0.2128** -0.2622** -0.2354** -0.2589**
(0.0238) (0.0269) (0.0259) (0.0206)

Travel cost (dollars) -0.0021** -0.0019** -0.0019** -0.0019**
(0.0003) (0.0003) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -10.9723** -11.6811** -11.5690** -7.5899**
(0.9010) (2.2906) (2.3049) (0.8101)

High temp. (degrees C) 0.0198** 0.0280** 0.0286** 0.0300**
(0.0046) (0.0023) (0.0022) (0.0021)

Low temp. (degrees C) -0.0053 -0.0199** -0.0210** -0.0249**
(0.0058) (0.0024) (0.0024) (0.0024)

Precip. in week of arrival (mm) -0.0039** -0.0058** -0.0060** -0.0056**
(0.0011) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0121 -0.0414** -0.0424** -0.0390**
(0.0243) (0.0122) (0.0121) (0.0128)

N 2,884,364 2,854,171 2,854,171 2,851,414
WTP 100.43** 137.19** 121.83** 139.83**

(20.95) (27.77) (24.69) (25.27)

Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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Appendix I: Heterogeneous results within τ days of ar-

rival

The main estimation considers the cancellation decisions of users within τ = 7 days of

arrival, where τ is defined in Figure 3. In this section, we explore heterogeneous results for

alternative temporal thresholds. We reconstruct the dataset to estimate visitors’ probability

of cancellation within τ = 3, 5, 7, and 9 days of arrival. The variable of interest is an indicator

equal to 1 if a smoke-affected day occurred within the τ day threshold. We consider only

standing, uncancelled reservations as of τ days before arrival.

Table I1 reports these results.32 For τ = 3, 5, 7, and 9 days, we find welfare damages

of $137, $129, $107, and $92 per person per trip, respectively. These results are consistent

with an information mechanism, which was explored in Section 4.2. For smaller values of τ ,

the occurrence of one smoke day corresponds to a greater likelihood of smoke on the actual

day of arrival. Visitors may have a greater propensity to cancel when observing smoke closer

to the date of arrival. The travel cost coefficient is largely stable as τ decreases; greater

willingness to pay (WTP) is driven by a growth in the magnitude of the smoke coefficient.

32In addition, refer to Table 4 in the main text for results when τ = 7.
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Table I1: P(Cijt = 0|Rijt = 1) Within τ Days of Arrival

τ 3 days 5 days 7 days 9 days

Smoke -0.2961** -0.2929** -0.2603** -0.2281**
(0.0536) (0.0241) (0.0218) (0.0207)

Travel cost (dollars) -0.0022** -0.0023** -0.0025** -0.0025**
(0.0004) (0.0004) (0.0003) (0.0003)

Inv. distance to wildfire (km−1) -12.2894* -7.9469** -7.8141** -7.7057**
(4.9610) (0.8285) (0.7920) (0.8411)

High temp. (degrees C) 0.0384** 0.0343** 0.0306** 0.0284**
(0.0026) (0.0023) (0.0023) (0.0020)

Low temp. (degrees C) -0.0310** -0.0279** -0.0252** -0.0235**
(0.0029) (0.0026) (0.0025) (0.0023)

Precip. (mm) -0.0052** -0.0054** -0.0057** -0.0055**
(0.0009) (0.0008) (0.0009) (0.0009)

ε̃ijt -0.0291* -0.0353** -0.0385** -0.0380**
(0.0147) (0.0136) (0.0106) (0.0126)

N 2,917,431 2,783,520 2,688,739 2,602,897
WTP 136.73** 128.9** 107.14** 91.69**

(37.43) (22.22) (16.33) (15.03)

Day-of-week FE Yes Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes Yes
Campground x year FE Yes Yes Yes Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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Appendix J: Heterogeneous results by campground pop-

ularity

This section explores heterogeneous welfare damages based on the popularity of a camp-

ground. We define popularity based on the average number of visitors per year for years in

which it was open. For reference, Table A1 shows the most-visited campgrounds, many of

which belong to high-profile national parks, such as Yosemite, Grand Canyon, and Rocky

Mountain. The least popular tend to be small, local, or regional US Forest Service camp-

grounds. We rerun the main estimation but allow the smoke and travel cost coefficients to

vary by the quartile of popularity. Given 999 campgrounds, each quartile contains approxi-

mately 250.

Figure J1 summarizes the point estimates for smoke responses, travel cost responses, and

willingness to pay (WTP). Full results are displayed in Table J1. Across specifications,

the magnitude for both the smoke and travel cost coefficients are lower at more popular

campgrounds. These results suggest visitors are more willing to incur both higher travel

costs and some environmental disamenity for highly desirable locations.

The translation of these responses to welfare impacts is less clear. WTP is estimated

as the ratio of marginal disutility in smoke to that in expenditure (the smoke coefficient

divided by the travel cost coefficient). Because WTP is a ratio, it could be either higher

or lower given reductions in both the smoke parameter (the numerator) and the travel cost

parameter (the denominator). Figure J1 shows that the reduction in the smoke parameter

dominates, resulting in lower WTP at popular campgrounds. Table J1 confirms that WTP

is lower at popular campgrounds across all specifications. In general, welfare damages tend

to be largest for the middle two quartiles of popularity.
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Figure J1: Point Estimates for Smoke Response, Travel Cost Response, and Willingness to
Pay (WTP) by Quartile of Popularity Using Model (4) (visitors are less responsive to smoke
and travel cost at more popular campgrounds)
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Table J1: P(Cijt = 0|Rijt = 1), Heterogeneity by Campground Popularity

(1) (2) (3) (4)

Inv. distance to wildfire (km−1) -11.0284** -12.0844** -11.9595** -7.8196**
(0.9225) (2.4306) (2.4448) (0.8254)

High temp. (degrees C) 0.0187** 0.0289** 0.0293** 0.0307**
(0.0044) (0.0023) (0.0023) (0.0022)

Low temp. (degrees C) -0.0012 -0.0204** -0.0213** -0.0252**
(0.0055) (0.0025) (0.0025) (0.0025)

Precip. in week of arrival (mm) -0.0046** -0.0059** -0.0061** -0.0057**
(0.0010) (0.0009) (0.0009) (0.0009)

ε̃ijt -0.0037 -0.0377** -0.0387** -0.0402**
(0.0256) (0.0120) (0.0120) (0.0122)

Smoke x first quartile (most popular) -0.2208** -0.2297** -0.2035** -0.2446**
(0.0320) (0.0345) (0.0338) (0.0286)

Smoke x second quartile -0.2563** -0.3296** -0.3007** -0.2915**
(0.0425) (0.0417) (0.0407) (0.0335)

Smoke x third quartile -0.2364** -0.3161** -0.2889** -0.3301**
(0.0462) (0.0482) (0.0482) (0.0482)

Smoke x fourth quartile (least popular) -0.2488** -0.3577** -0.3457** -0.2781**
(0.0576) (0.0673) (0.0681) (0.0743)

Travel cost x first quartile (most popular) -0.0028** -0.0023** -0.0024** -0.0024**
(0.0004) (0.0003) (0.0003) (0.0004)

Travel cost x second quartile -0.0010* -0.0027** -0.0027** -0.0026**
(0.0005) (0.0003) (0.0003) (0.0003)

Travel cost x third quartile -0.0009 -0.0030** -0.0030** -0.0030**
(0.0006) (0.0004) (0.0004) (0.0004)

Travel cost x fourth quartile (least popular) -0.0009 -0.0031** -0.0031** -0.0032**
(0.0006) (0.0005) (0.0005) (0.0005)

WTP: first quartile (most popular) 79.36** 98.63** 86.49** 102.87**
(17.55) (21.64) (20.09) (18.25)

WTP: second quartile 249.52 123.65** 112.36** 110.23**
(136.76) (22.99) (21.6) (19.31)

WTP: third quartile 253.55 106.16** 96.52** 108.62**
(169.66) (22.64) (21.48) (20.82)

WTP: fourth quartile (least popular) 272.18 116.18** 110.39** 87.8**
(195.78) (29.58) (28.58) (27.56)

N 2,723,034 2,691,655 2,691,655 2,688,739
Campground FE Yes Yes
Day-of-week FE Yes Yes Yes
Campground x week-of-year FE Yes Yes Yes
Year FE Yes
State x year FE Yes
Campground x year FE Yes

Notes: Std. err. clustered at campground level. * p < 0.05, ** p < 0.01.
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Appendix K: Total welfare estimate data construction

In Section 5, we report estimates for the total annual number of recreation visits affected

by smoke in the west; we combine the Recreation.gov data with overall visitation data from

various federal and state agencies. In particular, we use total visitation numbers from the

National Park Service, US Forest Service, Bureau of Land Management, US Army Corps

of Engineers, and National Association of State Park Directors. Each reports visitation

at varying spatial and temporal levels. For example, the National Park Service reports

visitation at a park by month level; the US Forest Service reports at a forest by year level;

and the state parks report at a state by year level. For each data source, we aggregate

the daily Recreation.gov data to the most relevant spatial and temporal scale to determine

the proportion of visits affected by smoke. We then multiply this proportion by the total

visitation data. In this section, we detail this process for each data source.

For the National Park Service, we use the agency’s Annual Summary Reports.33 This

dataset reports total monthly visitation at all national parks, national monuments, national

recreation areas, and other lands that the agency manages. In the western states, 27 national

parks are included in the Recreation.gov dataset, and 82 are not. For those 27 parks,

we determine each park’s monthly proportion of campers that were smoke affected. We

then multiply this proportion by each park’s monthly visitation from the Annual Summary

Reports to infer the total number of smoke-affected visits. For those 82 parks, we calculate

a statewide proportion of smoke-affected campers in the data. We multiply these state by

month proportions by each park’s visitation levels in the Annual Summary Reports based

on its location.

To estimate smoke-affected visits at national forests, we use the US Forest Service’s Na-

tional Visitor Use Monitoring (NVUM) Program.34 These data report visitation at all Na-

tional Forests at an annual level. In the west, 70 forests are included in the Recreation.gov

dataset, and 8 are not. For those 70 forests, we calculate each forest’s annual proportion

of campers affected by smoke and multiply it by the corresponding annual visitation to-

33National Park Service. Annual Summary Report. https://irma.nps.gov/STATS.
34US Forest Service. National Visitor Use Monitoring Program. https://www.fs.usda.gov/

about-agency/nvum.

78

https://irma.nps.gov/STATS
https://www.fs.usda.gov/about-agency/nvum
https://www.fs.usda.gov/about-agency/nvum


tals in the NVUM data. For those eight forests, we use a statewide annual proportion of

smoke-affected campers.

The Bureau of Land Management records visitation statistics as part of its Recreation

Management Information System (RMIS).35 We contacted the program administrator and

received data on site by year visitation for all BLM sites.36 Most visitation is not reservable,

and a large portion is considered backcountry. Therefore, the Recreation.gov dataset contains

very few BLM campgrounds. We thus combine annual state level proportions of smoke-

affected campers from the Recreation.gov data with annual site visitation from the RMIS.

For sites managed by the US Army Corps of Engineers, we use data from its Value to the

Nation (VTN) reports.37 For the study period of 2008 to 2017, the agency only has one year

of recreation data (2016). We treat this year as representative of typical annual visitation

over the study period. For each site, we multiply the total number of visitors by the state

level average of smoke-affected campers from the Recreation.gov data over all years.

Last, we estimate smoke impacts at state parks. We use visitation data from the National

Association of State Park Directors, which was compiled by Smith et al. (2019). For these

data, the unit of observation is a state by year. We again use annual state level proportions

of smoke-affected campers from the Recreation.gov data multiplied by the NASPD data.

Having approximated total visitation, we multiply each agency’s annual smoke-affected

visits by the empirical estimate of per trip losses due to wildfire smoke. We estimate that

more than 21.5 million recreation visits per year are affected by smoke in the west, with

annual losses of $2.3 billion. For further discussion, see Section 5.

35Bureau of Land Management. Public Land Statistics. https://www.blm.gov/about/data/

public-land-statistics.
36Ridenhour, L. and Leitzinger, K. Bureau of Land Management. Personal correspondence.
37US Army Corps of Engineers. Value to the Nation. https://www.iwr.usace.army.mil/Missions/

Value-to-the-Nation.
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